DrugLib.com — Drug Information Portal

Rx drug information, pharmaceutical research, clinical trials, news, and more

Trisenox (Arsenic Trioxide) - Warnings and Precautions



Experienced Physician and Institution: TRISENOX (arsenic trioxide) injection should be administered under the supervision of a physician who is experienced in the management of patients with acute leukemia.

APL Differentiation Syndrome: Some patients with APL treated with TRISENOX have experienced symptoms similar to a syndrome called the retinoic-acid-Acute Promyelocytic Leukemia (RA-APL) or APL differentiation syndrome, characterized by fever, dyspnea, weight gain, pulmonary infiltrates and pleural or pericardial effusions, with or without leukocytosis. This syndrome can be fatal. The management of the syndrome has not been fully studied, but high-dose steroids have been used at the first suspicion of the APL differentiation syndrome and appear to mitigate signs and symptoms. At the first signs that could suggest the syndrome (unexplained fever, dyspnea and/or weight gain, abnormal chest auscultatory findings or radiographic abnormalities), high-dose steroids (dexamethasone 10 mg intravenously BID) should be immediately initiated, irrespective of the leukocyte count, and continued for at least 3 days or longer until signs and symptoms have abated. The majority of patients do not require termination of TRISENOX therapy during treatment of the APL differentiation syndrome.

ECG Abnormalities: Arsenic trioxide can cause QT interval prolongation and complete atrioventricular block. QT prolongation can lead to a torsade de pointes-type ventricular arrhythmia, which can be fatal. The risk of torsade de pointes is related to the extent of QT prolongation, concomitant administration of QT prolonging drugs, a history of torsade de pointes, preexisting QT interval prolongation, congestive heart failure, administration of potassium-wasting diuretics, or other conditions that result in hypokalemia or hypomagnesemia. One patient (also receiving amphotericin B) had torsade de pointes during induction therapy for relapsed APL with arsenic trioxide.

ECG and Electrolyte Monitoring Recommendations: Prior to initiating therapy with TRISENOX, a 12-lead ECG should be performed and serum electrolytes (potassium, calcium, and magnesium) and creatinine should be assessed; preexisting electrolyte abnormalities should be corrected and, if possible, drugs that are known to prolong the QT interval should be discontinued. For QTc greater than 500 msec, corrective measures should be completed and the QTc reassessed with serial ECGs prior to considering using TRISENOX. During therapy with TRISENOX, potassium concentrations should be kept above 4 mEq/L and magnesium concentrations should be kept above 1.8 mg/dL. Patients who reach an absolute QT interval value > 500 msec should be reassessed and immediate action should be taken to correct concomitant risk factors, if any, while the risk/benefit of continuing versus suspending TRISENOX therapy should be considered. If syncope, rapid or irregular heartbeat develops, the patient should be hospitalized for monitoring, serum electrolytes should be assessed, TRISENOX therapy should be temporarily discontinued until the QTc interval regresses to below 460 msec, electrolyte abnormalities are corrected, and the syncope and irregular heartbeat cease. There are no data on the effect of TRISENOX on the QTc interval during the infusion.



(See boxed WARNING)

TRISENOX should be administered under the supervision of a physician who is experienced in the management of patients with acute leukemia.

APL Differentiation Syndrome

(See boxed WARNING)

Nine of 40 patients with APL treated with TRISENOX, at a dose of 0.15 mg/kg, experienced the APL differentiation syndrome (see boxed WARNING and ADVERSE REACTIONS).


Treatment with TRISENOX has been associated with the development of hyperleukocytosis (≥ 10 x 10³/uL) in 20 of 40 patients. A relationship did not exist between baseline WBC counts and development of hyperleukocytosis nor baseline WBC counts and peak WBC counts. Hyperleukocytosis was not treated with additional chemotherapy. WBC counts during consolidation were not as high as during induction treatment.

QT Prolongation

(See boxed WARNING)

QT/QTc prolongation should be expected during treatment with arsenic trioxide and torsade de pointes as well as complete heart block has been reported. Over 460 ECG tracings from 40 patients with refractory or relapsed APL treated with TRISENOX were evaluated for QTc prolongation. Sixteen of 40 patients (40%) had at least one ECG tracing with a QTc interval greater than 500 msec. Prolongation of the QTc was observed between 1 and 5 weeks after TRISENOX infusion, and then returned towards baseline by the end of 8 weeks after TRISENOX infusion. In these ECG evaluations, women did not experience more pronounced QT prolongation than men, and there was no correlation with age.

Complete AV block

Complete AV block has been reported with arsenic trioxide in the published literature including a case of a patient with APL.


Carcinogenicity studies have not been conducted with TRISENOX by intravenous administration. The active ingredient of TRISENOX, arsenic trioxide is a human carcinogen.


TRISENOX may cause fetal harm when administered to a pregnant woman. Studies in pregnant mice, rats, hamsters, and primates have shown that inorganic arsenicals cross the placental barrier when given orally or by injection. The reproductive toxicity of arsenic trioxide has been studied in a limited manner. An increase in resorptions, neural-tube defects, anophthalmia and microphthalmia were observed in rats administered 10 mg/kg of arsenic trioxide on gestation day 9 (approximately 10 times the recommended human daily dose on a mg/m² basis). Similar findings occurred in mice administered a 10 mg/kg dose of a related trivalent arsenic, sodium arsenite, (approximately 5 times the projected human dose on a mg/m² basis) on gestation days 6, 7, 8 or 9. Intravenous injection of 2 mg/kg sodium arsenite (approximately equivalent to the projected human daily dose on a mg/m² basis) on gestation day 7 (the lowest dose tested) resulted in neural-tube defects in hamsters.

There are no studies in pregnant women using TRISENOX. If this drug is used during pregnancy or if the patient becomes pregnant while taking this drug, the patient should be apprised of the potential harm to the fetus. One patient who became pregnant while receiving arsenic trioxide had a miscarriage. Women of childbearing potential should be advised to avoid becoming pregnant.


Laboratory Tests

The patient’s electrolyte, hematologic and coagulation profiles should be monitored at least twice weekly, and more frequently for clinically unstable patients during the induction phase and at least weekly during the consolidation phase. ECGs should be obtained weekly, and more frequently for clinically unstable patients, during induction and consolidation.

Drug Interactions

No formal assessments of pharmacokinetic drug-drug interactions between TRISENOX and other agents have been conducted. Caution is advised when TRISENOX is coadministered with other medications that can prolong the QT interval (e.g., certain antiarrhythmics or thioridazine) or lead to electrolyte abnormalities (such as diuretics or amphotericin B).

Carcinogenesis, Mutagenesis, Impairment of Fertility

See WARNINGS section for information on carcinogenesis. Arsenic trioxide and trivalent arsenite salts have not been demonstrated to be mutagenic to bacteria, yeast or mammalian cells. Arsenite salts are clastogenic in vitro (human fibroblast, human lymphocytes, Chinese hamster ovary cells, Chinese hamster V79 lung cells). Trivalent arsenic produced an increase in the incidence of chromosome aberrations and micronuclei in bone marrow cells of mice. The effect of arsenic on fertility has not been adequately studied.


Pregnancy Category D. See WARNINGS section.

Nursing Mothers

Arsenic is excreted in human milk. Because of the potential for serious adverse reactions in nursing infants from TRISENOX, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother. 

Pediatric Use

There are limited clinical data on the pediatric use of TRISENOX. Of 5 patients below the age of 18 years (age range: 5 to 16 years) treated with TRISENOX, at the recommended dose of 0.15 mg/kg/day, 3 achieved a complete response.

In an additional study, the toxicity profile observed in 13 pediatric patients with APL between the ages of 4 and 20 receiving TRISENOX at 0.15 mg/kg/day was similar to that observed in adult patients (see ADVERSE REACTIONS).

Safety and effectiveness in relapsed APL pediatric patients below the age of 4 years have not been studied.

Patients with Renal Impairment

Exposure of arsenic trioxide may be higher in patients with severe renal impairment (See CLINICAL PHARMACOLOGY, Special Populations.). Patients with severe renal impairment (creatinine clearance less than 30 mL/min) should be closely monitored for toxicity when these patients are treated with TRISENOX, and a dose reduction may be warranted. 

The use of TRISENOX in patients on dialysis has not been studied.

Patients with Hepatic Impairment

Since limited data are available across all hepatic impairment groups, caution is advised in the use of TRISENOX in patients with hepatic impairment (see CLINICAL PHARMACOLOGY, Special Populations).  Patients with severe hepatic impairment (Child-Pugh class C) should be closely monitored for toxicity when these patients are treated with TRISENOX.

Page last updated: 2014-04-04

-- advertisement -- The American Red Cross
Home | About Us | Contact Us | Site usage policy | Privacy policy

All Rights reserved - Copyright DrugLib.com, 2006-2015