CLINICAL PHARMACOLOGY
Mechanism of Action
SYNERA applied to intact skin provides local dermal analgesia by the release of lidocaine and tetracaine from the patch into the skin. Lidocaine is an amide-type local anesthetic agent and tetracaine is an ester-type local anesthetic agent. Both lidocaine and tetracaine block sodium ion channels required for the initiation and conduction of neuronal impulses, resulting in local anesthesia.
Pharmacokinetics
Absorption - Application of one SYNERA patch for 30 minutes in adults produced peak plasma concentrations of lidocaine less than 5 ng/mL while plasma levels of tetracaine were below the limit of quantitation (<0.9 ng/mL) in all subjects tested (n = 12, see Table 1). SYNERA application up to 60 minutes did not significantly increase plasma levels of lidocaine or tetracaine compared to a 30-minute application.
Table 1 Absorption of Lidocaine and Tetracaine from SYNERA in Normal Adult Volunteers (n = 12)
* Estimated absorbed dose was calculated by subtracting the residual amount of drug in each patch from the labeled claim na = not applicable The surface area of application was 10 cm2 per SYNERA patch.
Application of SYNERA to broken or inflamed skin or more than four simultaneous or sequentially applied SYNERA patches could result in higher plasma levels of local anesthetic that carries the risk of systemic toxicity.
Simultaneous or sequential application of multiple SYNERA patches is not recommended. However, plasma levels of lidocaine and tetracaine have been determined in clinical pharmacology studies following multiple successive and simultaneous applications of SYNERA patches on intact skin. Maximum plasma levels of lidocaine after the application of a) four successive SYNERA patches for 30 minutes each with a 30-minute interval between each patch application, and b) three SYNERA patches for 60 minutes each with a 60-minute interval between each application were less than 12 ng/mL and 8 ng/mL, respectively. Tetracaine was not detected in plasma following either treatment. Simultaneous application of two or four SYNERA patches for 60 minutes produced peak plasma concentrations of lidocaine of less than 9 ng/mL, while tetracaine plasma concentrations were not detectable in all subjects (n=22). Sequential 30-minute applications of four SYNERA patches at 60-minute intervals produced peak plasma concentrations of lidocaine of less than 12 ng/mL, while tetracaine plasma concentrations were below the limit of quantitation (n=11).
Distribution - When lidocaine is administered intravenously to healthy volunteers, the steady-state volume of distribution is approximately 0.8 to 1.3 L/kg. At lidocaine concentrations observed following the recommended product application, approximately 75% of lidocaine is bound to plasma proteins, primarily alpha-1-acid glycoprotein. At much higher plasma concentrations (1 to 4 mcg/mL of free base) the plasma protein binding of lidocaine is concentration dependent. Lidocaine crosses the placental and blood brain barriers, presumably by passive diffusion. CNS toxicity is seen with plasma levels of 5000 ng/mL of lidocaine; however a small number of patients reportedly may show signs of toxicity at approximately 1000 ng/mL. Volume of distribution and protein binding have not been determined for tetracaine due to rapid hydrolysis in plasma.
Metabolism - It is not known if lidocaine or tetracaine is metabolized in the skin. Lidocaine is metabolized rapidly by the liver to a number of metabolites including monoethylglycinexylidide (MEGX) and glycinexylidide (GX), both of which have pharmacologic activity similar to, but less potent than that of lidocaine. The major metabolic pathway of lidocaine, sequential N-deethylation to monoethylglycinexylidide (MEGX) and glycinexylidide (GX), is primarily mediated by CYP1A2 with a minor role of CYP3A4. The metabolite, 2,6-xylidine, has unknown pharmacologic activity. Following intravenous administration of lidocaine, MEGX and GX concentrations in serum range from 11% to 36% and from 5% to 11% of lidocaine concentrations, respectively. Serum concentrations of MEGX were about one-third the serum lidocaine concentrations. Tetracaine undergoes rapid hydrolysis by plasma esterases. Primary metabolites of tetracaine include para-aminobenzoic acid and diethylaminoethanol, both of which have an unspecified activity.
Elimination - The half-life of lidocaine elimination from the plasma following intravenous administration is approximately 1.8 hr. Lidocaine and its metabolites are excreted by the kidneys. More than 98% of an absorbed dose of lidocaine can be recovered in the urine as metabolites or parent drug. Less than 10% of lidocaine is excreted unchanged in adults, and approximately 20% is excreted unchanged in neonates. The systemic clearance is approximately 8-10 mL/min/kg. During intravenous studies, the elimination half-life of lidocaine was statistically significantly longer in elderly patients (2.5 hours) than in younger patients (1.5 hours). The half-life and clearance for tetracaine have not been established for humans, but hydrolysis in the plasma is rapid.
Pediatric Patients - Application of one SYNERA patch for up to 30 minutes in children 4 months to 12 years of age (n=18) produced maximum peak plasma concentrations of lidocaine and tetracaine of 63 ng/mL and 65 ng/mL, respectively. Application of two SYNERA patches for up to 30 minutes to children 4 months to 12 years of age (n=19) produced peak lidocaine levels of up to 331 ng/mL and tetracaine levels of less than 5 ng/mL.
Elderly - After application of one SYNERA patch for 20 minutes, plasma levels of lidocaine and tetracaine were not detectable in elderly subjects (> 65 years of age, mean 72.0 ±4.3 years, n=10). After simultaneous application of two SYNERA patches for 60 minutes to elderly subjects (> 65 years of age, mean 69.5 ±3.7 years, n=12), the maximum peak lidocaine concentration was 6 ng/mL and tetracaine was not detectable. During intravenous studies, the elimination half-life of lidocaine was statistically significantly longer in elderly patients (2.5 hours) than in younger patients (1.5 hours).
Cardiac, Renal and Hepatic Impairment - No specific pharmacokinetic studies were conducted. The half-life of lidocaine may be increased in individuals with cardiac or hepatic dysfunction. There is no established half-life for tetracaine due to rapid hydrolysis in the plasma.
NONCLINICAL TOXICOLOGY
Carcinogenesis, Mutagenesis, Impairment of Fertility
Carcinogenesis - Long-term studies in animals have not been performed to evaluate the carcinogenic potential of either lidocaine or tetracaine.
Mutagenesis - The mutagenic potential of lidocaine base and tetracaine base has been determined in the in vitro Ames Bacterial Reverse Mutation Assay, the in vitro chromosome aberration assay using Chinese hamster ovary cells, and the in vivo mouse micronucleus assay. Lidocaine was negative in all three assays. Tetracaine was negative in the in vitro Ames assay and the in vivo mouse micronucleus assay. In the in vitro chromosome aberration assay, tetracaine was negative in the absence of metabolic activation, and equivocal in the presence of metabolic activation.
Impairment of Fertility - Lidocaine did not affect fertility in female rats when given via continuous subcutaneous infusion via osmotic minipumps up to doses of 250 mg/kg/day (1500 mg/m2 or 43-fold higher than the SDA). Although lidocaine treatment of male rats increased the copulatory interval and lead to a dose-related decreased homogenization resistant sperm head count, daily sperm production, and spermatogenic efficiency, the treatment did not affect overall fertility in male rats when given subcutaneous doses up to 60 mg/kg (360 mg/m2 or 8-fold the SDA). Tetracaine did not affect fertility in male or female rats when given subcutaneous doses up to 7.5 mg/kg (45 mg/m2 or 1-fold the SDA). Multiples of exposure are based on an SDA of 70 mg each of lidocaine and tetracaine in SYNERA patch for 30 minutes to a 60 kg person (43 mg/m2).
|