DrugLib.com — Drug Information Portal

Rx drug information, pharmaceutical research, clinical trials, news, and more

Simcor (Simvastatin / Niacin) - Warnings and Precautions

 
 



WARNINGS AND PRECAUTIONS

SIMCOR should not be substituted for equivalent doses of immediate-release (crystalline) niacin. For patients switching from immediate-release niacin to SIMCOR, therapy with SIMCOR should be initiated at 500/20 mg and appropriately titrated to the desired therapeutic response. Patients already taking simvastatin 20-40 mg who need additional management of their lipid levels may be started on a SIMCOR dose of 500/40 mg once daily at bedtime. Doses of SIMCOR greater than 2000/40 mg are not recommended.

Myopathy/Rhabdomyolysis

Simvastatin

Simvastatin, like other inhibitors of HMG-CoA reductase, occasionally causes myopathy manifested as muscle pain, tenderness or weakness with creatine kinase (CK) above ten times the upper limit of normal (ULN). Myopathy sometimes takes the form of rhabdomyolysis with or without acute renal failure secondary to myoglobinuria, and rare fatalities have occurred. The risk of myopathy is increased by high levels of HMG-CoA reductase inhibitory activity in plasma.

As with other HMG-CoA reductase inhibitors, the risk of myopathy/rhabdomyolysis is dose related. In a clinical trial database in which 41,050 patients were treated with simvastatin with 24,747 (approximately 60%) treated for at least 4 years, the incidence of myopathy was approximately 0.02%, 0.08%, and 0.53% at 20, 40, and 80 mg/day, respectively. In these trials, patients were carefully monitored and some interacting medicinal products were excluded.

Potent inhibitors of CYP3A4: The risk of myopathy appears to be increased by high levels of HMG-CoA reductase inhibitory activity in plasma. Simvastatin is metabolized by the cytochrome P450 isoform 3A4. Certain drugs which share this metabolic pathway can raise the plasma levels of simvastatin and may increase the risk of myopathy. These include cyclosporine, itraconazole, ketoconazole, and other antifungal azoles, the macrolide antibiotics erythromycin and clarithromycin, and the ketolide antibiotic telithromycin, HIV protease inhibitors, the antidepressant nefazodone, or large quantities of grapefruit juice (> 1 quart daily).

The risk of myopathy/rhabdomyolysis is increased by concomitant use of simvastatin and, therefore, SIMCOR with the following:

Potent inhibitors of cytochrome P-450 isoform, 3A4 (CYP 3A4):

  •   Itraconazole, ketoconazole, and other antifungal azoles
  •   Macrolide antibiotics erythromycin, clarithromycin, and telithromycin
  •   HIV protease inhibitors
  •   Antidepressant nefazodone
  •   Grapefruit juice in large quantities (> 1 quart daily)

The use of SIMCOR concomitantly with these potent CYP3A4 inhibitors should be avoided. [See Drug Interactions ]

Cyclosporine or Danazol: Simvastatin dose should not exceed 10 mg daily in combination with cyclosporine or danazol. Therefore, the combined used of SIMCOR with cyclosporine or danazol should be avoided. [See Drug Interactions ]

Gemfibrozil: Simvastatin dose should not exceed 10 mg daily when concomitantly used with gemfibrozil. Therefore, the combined use of SIMCOR with gemfibrozil should be avoided. [See Drug Interactions ]

Other Fibrates: Combined use of SIMCOR with drugs that cause myopathy/rhabdomyolysis when given alone, such as fibrates, should be avoided. [See Drug Interactions ]

Amiodarone or Verapamil: The dose of the simvastatin component of SIMCOR should not exceed 20 mg in patients receiving amiodarone or verapamil concomitantly. The combined use of the simvastatin at doses higher than 20 mg daily with amiodarone or verapamil should be avoided unless the clinical benefit is likely to outweigh the increased risk of myopathy. [See Drug Interactions ]

SIMCOR

Myopathy and/or rhabdomyolysis have been reported when simvastatin is used in combination with lipid-altering doses (≥ 1 gram/day) of niacin. Physicians contemplating the use of SIMCOR, a combination of simvastatin and niacin extended-release (NIASPAN), should weigh the potential benefits and risks, and should carefully monitor for any signs and symptoms of muscle pain, tenderness, or weakness, particularly during the initial month of treatment or during any period of upward dosage titration of either drug. Periodic determination of serum creatine kinase (CK) determinations may be considered in such situations, but there is no assurance that such monitoring will prevent myopathy.

Patients starting therapy with SIMCOR should be advised of the risk of myopathy, and told to report promptly unexplained muscle pain, tenderness, or weakness. A CK level above 10 times ULN in a patient with unexplained muscle symptoms indicates myopathy. SIMCOR therapy should be discontinued if myopathy is diagnosed or suspected.

In patients with complicated medical histories predisposing to rhabdomyolysis, such as renal insufficiency, dose escalation requires caution. Also, as there are no known adverse consequences of brief interruption of therapy, treatment with SIMCOR should be stopped for a few days before elective major surgery and when any major acute medical or surgical condition supervenes (e.g., sepsis, hypotension, dehydration, major surgery, trauma, severe metabolic, endocrine, and electrolyte disorders, or uncontrolled seizures).

Liver Dysfunction

Cases of severe hepatic toxicity, including fulminant hepatic necrosis, have occurred in patients who have substituted sustained-release (modified-release, timed-release) niacin products for immediate-release (crystalline) niacin at equivalent doses. Patients previously receiving niacin products other than niacin extended-release (NIASPAN) should be started on SIMCOR at the lowest recommended starting dose. [See Dosage and Administration (2) ]

SIMCOR should be used with caution in patients who consume substantial quantities of alcohol and/or have a past history of liver disease. Active liver disease or unexplained transaminase elevations are contraindications to the use of SIMCOR. [See Contraindications (4) ]

Niacin extended-release (NIASPAN) and simvastatin can cause abnormal liver tests. In a simvastatin-controlled, 24 week study with SIMCOR in 641 patients, there were no persistent increases (to more than 3x the ULN) in serum transaminases. In three placebo-controlled clinical studies of niacin extended-release, patients with normal serum transaminases levels at baseline did not experience any transaminase elevations greater than 3x the ULN. Persistent increases (to more than 3x the ULN) in serum transaminases have occurred in approximately 1% of patients who received simvastatin in clinical studies. When drug treatment was interrupted or discontinued in these patients, the transaminases levels usually fell slowly to pretreatment levels. The increases were not associated with jaundice or other clinical signs or symptoms. There was no evidence of hypersensitivity.

Liver function tests should be performed on all patients during therapy with SIMCOR. It is recommended that liver function tests be performed before treatment begins, every 12 weeks for the first 6 months, and periodically thereafter (e.g., at approximately 6-month intervals). Patients who develop increased transaminase levels should be monitored with a second liver function evaluation to confirm the finding and be followed thereafter with frequent liver function tests until the abnormality returns to normal. Should an increase in transaminase levels of more than 3x ULN persist, or if transaminase elevations are associated with symptoms of nausea, fever, and/or malaise, withdrawal of SIMCOR therapy is recommended.

Laboratory Abnormalities

Increase in Blood Glucose: Niacin treatment can increase fasting blood glucose. In a simvastatin-controlled, 24-week study with SIMCOR the change from baseline in glycosylated hemoglobin levels was 0.2% for SIMCOR-treated patients and 0.2% for simvastatin-treated patients. Diabetic or potentially diabetic patients should be observed closely during treatment with SIMCOR, particularly during the first few months of therapy. Adjustment of diet and/or hypoglycemic therapy or discontinuation of SIMCOR may be necessary.

Reduction in platelet count: Niacin can reduce platelet count. In a simvastatin-controlled, 24-week study with SIMCOR the mean percent change from baseline for patients treated with 2000/40 mg daily was -5.6%.

Increase in ProthrombinTime (PT): Niacin can cause small increases in PT. In a simvastatin-controlled, 24-week study with SIMCOR this effect was not seen.

Increase in Uric Acid: Elevated uric acid levels have occurred with niacin therapy. In a simvastatin-controlled, 24-week study with SIMCOR this effect was not seen. Nevertheless, in patients predisposed to gout, SIMCOR therapy should be used with caution.

Decrease in Phosphorus: Small dose-related reductions in phosphorous levels were seen in clinical studies with niacin. In a simvastatin-controlled, 24-week study with SIMCOR this effect was not seen.

USE IN SPECIFIC POPULATIONS

Pregnancy

Pregnancy Category X – [See Contraindications (4) ]

SIMCOR is contraindicated in women who are or may become pregnant. Lipid lowering drugs offer no benefit during pregnancy, because cholesterol and cholesterol derivatives are needed for normal fetal development. Serum cholesterol and triglycerides increase during normal pregnancy. Atherosclerosis is a chronic process, and discontinuation of lipid-lowering drugs during pregnancy should have little impact on long-term outcomes of primary hypercholesterolemia therapy. There are no adequate and well-controlled studies of SIMCOR use during pregnancy; however, there are rare reports of congenital anomalies in infants exposed to HMG-CoA reductase inhibitors in utero. Animal reproduction studies of simvastatin in rats and rabbits showed no evidence of teratogenicity. SIMCOR may cause fetal harm when administered to a pregnant woman. If SIMCOR is used during pregnancy or if the patient becomes pregnant while taking this drug, the patient should be apprised of the potential hazard to the fetus.

SIMCOR contains simvastatin (a HMG-CoA reductase inhibitor) and niacin (nicotinic acid). There are rare reports of congenital anomalies following intrauterine exposure to HMG-CoA reductase inhibitors. In a review of approximately 100 prospectively followed pregnancies in women exposed to simvastatin or another structurally related HMG-CoA reductase inhibitor, the incidences of congenital anomalies, spontaneous abortions, and fetal deaths/stillbirths did not exceed those expected in the general population. However, the study was only able to exclude a 3- to 4-fold increased risk of congenital anomalies over the background rate. In 89% of these cases, drug treatment was initiated prior to pregnancy and was discontinued during the first trimester when pregnancy was identified. It is not known whether niacin at doses used for lipid disorders can cause fetal harm when administered to a pregnant woman.

Simvastatin was not teratogenic in rats or rabbits at doses that resulted in 3 times the human exposure based on mg/m2 surface area. However, in studies with another structurally-related HMG-CoA reductase inhibitor, skeletal malformations were observed in rats and mice. Animal reproduction studies have not been conducted with niacin.

Women of childbearing potential, who require SIMCOR treatment for a lipid disorder, should use effective contraception. Patients trying to conceive should contact their prescriber to discuss stopping SIMCOR treatment. If pregnancy occurs, SIMCOR should be immediately discontinued.

Nursing Mothers

It is not known whether simvastatin is excreted into human milk; however, a small amount of another drug in this class does pass into breast milk. Niacin is excreted into human milk but the actual infant dose or infant dose as a percent of the maternal dose is not known. Because of the potential for serious adverse reactions in nursing infants, nursing mothers who require SIMCOR treatment should not breastfeed their infants. A decision should be made whether to discontinue nursing or discontinue drug, taking into account the importance of the drug to the mother. [see Contraindications (4) ].

Pediatric Use

The safety and effectiveness of SIMCOR in pediatric patients have not been established.

Geriatric Use

There were 281 (30.8%) patients aged 65 years and older treated with SIMCOR in Phase III clinical studies. No overall differences in safety and effectiveness were observed between these patients and younger patients, but greater sensitivity of some older individuals cannot be ruled out. A pharmacokinetic study with simvastatin showed the mean plasma level of HMG-CoA reductase inhibitory activity to be approximately 45% higher in elderly patients between 70-78 years of age compared with patients between 18-30 years of age.

Gender

Data from the clinical trials suggest that women have a greater hypolipidemic response than men at equivalent doses of niacin extended-release. No consistent gender differences in efficacy and safety were observed in SIMCOR studies.

Renal Impairment

No pharmacokinetic studies have been conducted in patients with renal impairment for SIMCOR. Caution should be exercised when SIMCOR is administered to patients with renal disease. For patients with severe renal insufficiency, SIMCOR should not be started unless the patient has already tolerated treatment with simvastatin at a dose of 10 mg or higher. Caution should be exercised when SIMCOR is administered to these patients and they should be closely monitored.

Hepatic Impairment

No pharmacokinetic studies have been conducted in patients with hepatic insufficiency for SIMCOR. [See Warnings and Precautions ]

Page last updated: 2010-08-06

-- advertisement -- The American Red Cross
 
Home | About Us | Contact Us | Site usage policy | Privacy policy

All Rights reserved - Copyright DrugLib.com, 2006-2017