DrugLib.com — Drug Information Portal

Rx drug information, pharmaceutical research, clinical trials, news, and more

Seroquel (Quetiapine Fumarate) - Description and Clinical Pharmacology

 
 



SEROQUEL®
(quetiapine fumarate)
TABLETS

DESCRIPTION

SEROQUEL® (quetiapine fumarate) is a psychotropic agent belonging to a chemical class, the dibenzothiazepine derivatives. The chemical designation is 2-[2-(4-dibenzo [ b,f ] [1,4]thiazepin-11-yl-1-piperazinyl)ethoxy]-ethanol fumarate (2:1) (salt). It is present in tablets as the fumarate salt. All doses and tablet strengths are expressed as milligrams of base, not as fumarate salt. Its molecular formula is C42H50N6O4S2•C4H4O4 and it has a molecular weight of 883.11 (fumarate salt). The structural formula is:

Quetiapine fumarate is a white to off-white crystalline powder which is moderately soluble in water.

SEROQUEL is supplied for oral administration as 25 mg (round, peach), 50 mg (round, white), 100 mg (round, yellow), 200 mg (round, white), 300 mg (capsule-shaped, white), and 400 mg (capsule shaped, yellow) tablets.

Inactive ingredients are povidone, dibasic dicalcium phosphate dihydrate, microcrystalline cellulose, sodium starch glycolate, lactose monohydrate, magnesium stearate, hypromellose, polyethylene glycol and titanium dioxide.

The 25 mg tablets contain red ferric oxide and yellow ferric oxide and the 100 mg and 400 mg tablets contain only yellow ferric oxide.

CLINICAL PHARMACOLOGY

Pharmacodynamics

SEROQUEL is an antagonist at multiple neurotransmitter receptors in the brain: serotonin 5HT1A and 5HT2 (IC50s=717 & 148nM respectively), dopamine D1 and D2 (IC50s=1268 & 329nM respectively), histamine H1 (IC50=30nM), and adrenergic α1 and α2 receptors (IC50s=94 & 271nM, respectively). SEROQUEL has no appreciable affinity at cholinergic muscarinic and benzodiazepine receptors (IC50s>5000 nM).

The mechanism of action of SEROQUEL, as with other drugs having efficacy in the treatment of schizophrenia and bipolar disorder, is unknown. However, it has been proposed that the efficacy of SEROQUEL in schizophrenia and its mood stabilizing properties in bipolar depression and mania are mediated through a combination of dopamine type 2 (D2) and serotonin type 2 (5HT2) antagonism. Antagonism at receptors other than dopamine and 5HT2 with similar receptor affinities may explain some of the other effects of SEROQUEL.

SEROQUEL’s antagonism of histamine H1 receptors may explain the somnolence observed with this drug.

SEROQUEL’s antagonism of adrenergic α1 receptors may explain the orthostatic hypotension observed with this drug.

Pharmacokinetics

Quetiapine fumarate activity is primarily due to the parent drug. The multiple-dose pharmacokinetics of quetiapine are dose-proportional within the proposed clinical dose range, and quetiapine accumulation is predictable upon multiple dosing. Elimination of quetiapine is mainly via hepatic metabolism with a mean terminal half-life of about 6 hours within the proposed clinical dose range. Steady-state concentrations are expected to be achieved within two days of dosing. Quetiapine is unlikely to interfere with the metabolism of drugs metabolized by cytochrome P450 enzymes.

Absorption:

Quetiapine fumarate is rapidly absorbed after oral administration, reaching peak plasma concentrations in 1.5 hours. The tablet formulation is 100% bioavailable relative to solution. The bioavailability of quetiapine is marginally affected by administration with food, with Cmax and AUC values increased by 25% and 15%, respectively.

Distribution:

Quetiapine is widely distributed throughout the body with an apparent volume of distribution of 10±4 L/kg. It is 83% bound to plasma proteins at therapeutic concentrations. In vitro, quetiapine did not affect the binding of warfarin or diazepam to human serum albumin. In turn, neither warfarin nor diazepam altered the binding of quetiapine

Metabolism and Elimination:

Following a single oral dose of 14C-quetiapine, less than 1% of the administered dose was excreted as unchanged drug, indicating that quetiapine is highly metabolized. Approximately 73% and 20% of the dose was recovered in the urine and feces, respectively.

Quetiapine is extensively metabolized by the liver. The major metabolic pathways are sulfoxidation to the sulfoxide metabolite and oxidation to the parent acid metabolite; both metabolites are pharmacologically inactive. In vitro studies using human liver microsomes revealed that the cytochrome P450 3A4 isoenzyme is involved in the metabolism of quetiapine to its major, but inactive, sulfoxide metabolite.

Population Subgroups:

Age: Oral clearance of quetiapine was reduced by 40% in elderly patients (≥ 65 years, n=9) compared to young patients (n=12), and dosing adjustment may be necessary (See DOSAGE AND ADMINISTRATION).

Gender:

There is no gender effect on the pharmacokinetics of quetiapine.

Race:

There is no race effect on the pharmacokinetics of quetiapine.

Smoking:

Smoking has no effect on the oral clearance of quetiapine.

Renal Insufficiency:

Patients with severe renal impairment (Clcr=10-30 mL/min/1.73 m2, n=8) had a 25% lower mean oral clearance than normal subjects (Clcr > 80 mL/min/1.73 m2, n=8), but plasma quetiapine concentrations in the subjects with renal insufficiency were within the range of concentrations seen in normal subjects receiving the same dose. Dosage adjustment is therefore not needed in these patients.

Hepatic Insufficiency:

Hepatically impaired patients (n=8) had a 30% lower mean oral clearance of quetiapine than normal subjects. In two of the 8 hepatically impaired patients, AUC and Cmax were 3-times higher than those observed typically in healthy subjects. Since quetiapine is extensively metabolized by the liver, higher plasma levels are expected in the hepatically impaired population, and dosage adjustment may be needed (See DOSAGE AND ADMINISTRATION).

Drug-Drug Interactions:

In vitro enzyme inhibition data suggest that quetiapine and 9 of its metabolites would have little inhibitory effect on in vivo metabolism mediated by cytochromes P450 1A2, 2C9, 2C19, 2D6 and 3A4.

Quetiapine oral clearance is increased by the prototype cytochrome P450 3A4 inducer, phenytoin, and decreased by the prototype cytochrome P450 3A4 inhibitor, ketoconazole. Dose adjustment of quetiapine will be necessary if it is coadministered with phenytoin or ketoconazole (See Drug Interactions under PRECAUTIONS and DOSAGE AND ADMINISTRATION).

Quetiapine oral clearance is not inhibited by the non-specific enzyme inhibitor, cimetidine.

Quetiapine at doses of 750 mg/day did not affect the single dose pharmacokinetics of antipyrine, lithium or lorazepam (See Drug Interactions under PRECAUTIONS).

Clinical Efficacy Data

Bipolar Disorder

Depression

The efficacy of SEROQUEL for the treatment of depressive episodes associated with bipolar disorder was established in 2 identical 8-week, randomized, double-blind, placebo-controlled studies (N=1045). These studies included patients with either bipolar I or II disorder and those with or without a rapid cycling course. Patients randomized to SEROQUEL were administered fixed doses of either 300 mg or 600 mg once daily.

The primary rating instrument used to assess depressive symptoms in these studies was the Montgomery-Asberg Depression Rating Scale (MADRS), a 10 item clinician-rated scale with scores ranging from 0 to 60. The primary endpoint in both studies was the change from baseline in MADRS score at week 8. In both studies, SEROQUEL was superior to placebo in reduction of MADRS score. Improvement in symptoms, as measured by change in MADRS score relative to placebo, was seen in both studies at Day 8 (week 1) and onwards. In these studies, no additional benefit was seen with the 600 mg dose. For the 300 mg dose group, statistically significant improvements over placebo were seen in overall quality of life and satisfaction related to various areas of functioning, as measured using the Q-LES-Q(SF).

Mania

The efficacy of SEROQUEL in the treatment of acute manic episodes was established in 3 placebo-controlled trials in patients who met DSM-IV criteria for Bipolar I disorder with manic episodes. These trials included patients with or without psychotic features and excluded patients with rapid cycling and mixed episodes. Of these trials, 2 were monotherapy (12 weeks) and 1 was adjunct therapy (3 weeks) to either lithium or divalproex. Key outcomes in these trials were change from baseline in the Young Mania Rating Scale (YMRS) score at 3 and 12 weeks for monotherapy and at 3 weeks for adjunct therapy. Adjunct therapy is defined as the simultaneous initiation or subsequent administration of SEROQUEL with lithium or divalproex.

The primary rating instrument used for assessing manic symptoms in these trials was YMRS, an 11-item clinician-rated scale traditionally used to assess the degree of manic symptomatology (irritability, disruptive/aggressive behavior, sleep, elevated mood, speech, increased activity, sexual interest, language/thought disorder, thought content, appearance, and insight) in a range from 0 (no manic features) to 60 (maximum score).

The results of the trials follow:

Monotherapy

In two 12-week trials (n=300, n=299) comparing SEROQUEL to placebo, SEROQUEL was superior to placebo in the reduction of the YMRS total score at weeks 3 and 12. The majority of patients in these trials taking SEROQUEL were dosed in a range between 400 and 800 mg per day.

Adjunct Therapy

In this 3-week placebo-controlled trial, 170 patients with acute bipolar mania (YMRS ≥ 20) were randomized to receive SEROQUEL or placebo as adjunct treatment to lithium or divalproex. Patients may or may not have received an adequate treatment course of lithium or divalproex prior to randomization. SEROQUEL was superior to placebo when added to lithium or divalproex alone in the reduction of YMRS total score.

The majority of patients in this trial taking SEROQUEL were dosed in a range between 400 and 800 mg per day. In a similarly designed trial (n=200), SEROQUEL was associated with an improvement in YMRS scores but did not demonstrate superiority to placebo, possibly due to a higher placebo effect.

Schizophrenia

The efficacy of SEROQUEL in the treatment of schizophrenia was established in 3 short-term (6-week) controlled trials of inpatients with schizophrenia who met DSM III-R criteria for schizophrenia. Although a single fixed dose haloperidol arm was included as a comparative treatment in one of the three trials, this single haloperidol dose group was inadequate to provide a reliable and valid comparison of SEROQUEL and haloperidol.

Several instruments were used for assessing psychiatric signs and symptoms in these studies, among them the Brief Psychiatric Rating Scale (BPRS), a multi-item inventory of general psychopathology traditionally used to evaluate the effects of drug treatment in schizophrenia. The BPRS psychosis cluster (conceptual disorganization, hallucinatory behavior, suspiciousness, and unusual thought content) is considered a particularly useful subset for assessing actively psychotic schizophrenic patients. A second traditional assessment, the Clinical Global Impression (CGI), reflects the impression of a skilled observer, fully familiar with the manifestations of schizophrenia, about the overall clinical state of the patient. In addition, the Scale for Assessing Negative Symptoms (SANS), a more recently developed but less well evaluated scale, was employed for assessing negative symptoms.

The results of the trials follow:

  1. In a 6-week, placebo-controlled trial (n=361) involving 5 fixed doses of SEROQUEL (75, 150, 300, 600 and 750 mg/day on a tid schedule), the 4 highest doses of SEROQUEL were generally superior to placebo on the BPRS total score, the BPRS psychosis cluster and the CGI severity score, with the maximal effect seen at 300 mg/day, and the effects of doses of 150 to 750 mg/day were generally indistinguishable. SEROQUEL, at a dose of 300 mg/day, was superior to placebo on the SANS.

  2. In a 6-week, placebo-controlled trial (n=286) involving titration of SEROQUEL in high (up to 750 mg/day on a tid schedule) and low (up to 250 mg/day on a tid schedule) doses, only the high dose SEROQUEL group (mean dose, 500 mg/day) was generally superior to placebo on the BPRS total score, the BPRS psychosis cluster, the CGI severity score, and the SANS.

  3. In a 6-week dose and dose regimen comparison trial (n=618) involving two fixed doses of SEROQUEL (450 mg/day on both bid and tid schedules and 50 mg/day on a bid schedule), only the 450 mg/day (225 mg bid schedule) dose group was generally superior to the 50 mg/day (25 mg bid) SEROQUEL dose group on the BPRS total score, the BPRS psychosis cluster, the CGI severity score, and on the SANS.

Examination of population subsets (race, gender, and age) did not reveal any differential responsiveness on the basis of race or gender, with an apparently greater effect in patients under the age of 40 compared to those older than 40. The clinical significance of this finding is unknown.

ANIMAL TOXICOLOGY

Quetiapine caused a dose-related increase in pigment deposition in thyroid gland in rat toxicity studies which were 4 weeks in duration or longer and in a mouse 2 year carcinogenicity study. Doses were 10-250 mg/kg in rats, 75-750 mg/kg in mice; these doses are 0.1-3.0, and 0.1-4.5 times the maximum recommended human dose (on a mg/m2 basis), respectively. Pigment deposition was shown to be irreversible in rats. The identity of the pigment could not be determined, but was found to be co-localized with quetiapine in thyroid gland follicular epithelial cells. The functional effects and the relevance of this finding to human risk are unknown.

In dogs receiving quetiapine for 6 or 12 months, but not for 1 month, focal triangular cataracts occurred at the junction of posterior sutures in the outer cortex of the lens at a dose of 100 mg/kg, or 4 times the maximum recommended human dose on a mg/m2 basis. This finding may be due to inhibition of cholesterol biosynthesis by quetiapine. Quetiapine caused a dose related reduction in plasma cholesterol levels in repeat-dose dog and monkey studies; however, there was no correlation between plasma cholesterol and the presence of cataracts in individual dogs. The appearance of delta-8-cholestanol in plasma is consistent with inhibition of a late stage in cholesterol biosynthesis in these species. There also was a 25% reduction in cholesterol content of the outer cortex of the lens observed in a special study in quetiapine treated female dogs. Drug-related cataracts have not been seen in any other species; however, in a 1-year study in monkeys, a striated appearance of the anterior lens surface was detected in 2/7 females at a dose of 225 mg/kg or 5.5 times the maximum recommended human dose on a mg/m2 basis.

-- advertisement -- The American Red Cross
 
Home | About Us | Contact Us | Site usage policy | Privacy policy

All Rights reserved - Copyright DrugLib.com, 2006-2014