DrugLib.com — Drug Information Portal

Rx drug information, pharmaceutical research, clinical trials, news, and more

Risperdal (Risperidone) - Drug Interactions, Contraindications, Overdosage, etc



Carbamazepine and Other Enzyme Inducers

In a drug interaction study in schizophrenic patients, 11 subjects received risperidone titrated to 6 mg/day for 3 weeks, followed by concurrent administration of carbamazepine for an additional 3 weeks. During co-administration, the plasma concentrations of risperidone and its pharmacologically active metabolite, 9-hydroxyrisperidone, were decreased by about 50%. Plasma concentrations of carbamazepine did not appear to be affected. The dose of risperidone may need to be titrated accordingly for patients receiving carbamazepine, particularly during initiation or discontinuation of carbamazepine therapy. Co-administration of other known enzyme inducers (e.g., phenytoin, rifampin, and phenobarbital) with risperidone may cause similar decreases in the combined plasma concentrations of risperidone and 9-hydroxyrisperidone, which could lead to decreased efficacy of risperidone treatment.

Fluoxetine and Paroxetine

Fluoxetine (20 mg QD) and paroxetine (20 mg QD) have been shown to increase the plasma concentration of risperidone 2.5–2.8 fold and 3–9 fold respectively. Fluoxetine did not affect the plasma concentration of 9-hydroxyrisperidone. Paroxetine lowered the concentration of 9-hydroxyrisperidone by about 10%. When either concomitant fluoxetine or paroxetine is initiated or discontinued, the physician should re-evaluate the dosing of RISPERDAL®. The effects of discontinuation of concomitant fluoxetine or paroxetine therapy on the pharmacokinetics of risperidone and 9-hydroxyrisperidone have not been studied.


Repeated oral doses of risperidone (3 mg BID) did not affect the exposure (AUC) or peak plasma concentrations (Cmax) of lithium (n=13).


Repeated oral doses of risperidone (4 mg QD) did not affect the pre-dose or average plasma concentrations and exposure (AUC) of valproate (1000 mg/day in three divided doses) compared to placebo (n=21). However, there was a 20% increase in valproate peak plasma concentration (Cmax) after concomitant administration of risperidone.


RISPERDAL® (0.25 mg BID) did not show a clinically relevant effect on the pharmacokinetics of digoxin.

Drugs That Inhibit CYP 2D6 and Other CYP Isozymes

Risperidone is metabolized to 9-hydroxyrisperidone by CYP 2D6, an enzyme that is polymorphic in the population and that can be inhibited by a variety of psychotropic and other drugs (see CLINICAL PHARMACOLOGY). Drug interactions that reduce the metabolism of risperidone to 9-hydroxyrisperidone would increase the plasma concentrations of risperidone and lower the concentrations of 9-hydroxyrisperidone. Analysis of clinical studies involving a modest number of poor metabolizers (n

70) does not suggest that poor and extensive metabolizers have different rates of adverse effects. No comparison of effectiveness in the two groups has been made.

In vitro studies showed that drugs metabolized by other CYP isozymes, including 1A1, 1A2, 2C9, 2C19, and 3A4, are only weak inhibitors of risperidone metabolism.

There were no significant interactions between risperidone and erythromycin (see CLINICAL PHARMACOLOGY).

Drugs Metabolized by CYP 2D6

In vitro studies indicate that risperidone is a relatively weak inhibitor of CYP 2D6. Therefore, RISPERDAL® is not expected to substantially inhibit the clearance of drugs that are metabolized by this enzymatic pathway. In drug interaction studies, risperidone did not significantly affect the pharmacokinetics of donepezil and galantamine, which are metabolized by CYP 2D6.


Human Experience

Premarketing experience included eight reports of acute RISPERDAL® (risperidone) overdosage with estimated doses ranging from 20 to 300 mg and no fatalities. In general, reported signs and symptoms were those resulting from an exaggeration of the drug's known pharmacological effects, i.e., drowsiness and sedation, tachycardia and hypotension, and extrapyramidal symptoms. One case, involving an estimated overdose of 240 mg, was associated with hyponatremia, hypokalemia, prolonged QT, and widened QRS. Another case, involving an estimated overdose of 36 mg, was associated with a seizure.

Postmarketing experience includes reports of acute RISPERDAL® overdosage, with estimated doses of up to 360 mg. In general, the most frequently reported signs and symptoms are those resulting from an exaggeration of the drug's known pharmacological effects, i.e., drowsiness, sedation, tachycardia, hypotension, and extrapyramidal symptoms. Other adverse events reported since market introduction which were temporally (but not necessarily causally) related to RISPERDAL® overdose, include torsade de pointes, prolonged QT interval, convulsions, cardiopulmonary arrest, and rare fatality associated with multiple drug overdose.

Management of Overdosage

In case of acute overdosage, establish and maintain an airway and ensure adequate oxygenation and ventilation. Gastric lavage (after intubation, if patient is unconscious) and administration of activated charcoal together with a laxative should be considered. Because of the rapid disintegration of RISPERDAL® M-TAB®Orally Disintegrating Tablets, pill fragments may not appear in gastric contents obtained with lavage.

The possibility of obtundation, seizures, or dystonic reaction of the head and neck following overdose may create a risk of aspiration with induced emesis. Cardiovascular monitoring should commence immediately and should include continuous electrocardiographic monitoring to detect possible arrhythmias. If antiarrhythmic therapy is administered, disopyramide, procainamide, and quinidine carry a theoretical hazard of QT-prolonging effects that might be additive to those of risperidone. Similarly, it is reasonable to expect that the alpha-blocking properties of bretylium might be additive to those of risperidone, resulting in problematic hypotension.

There is no specific antidote to RISPERDAL®. Therefore, appropriate supportive measures should be instituted. The possibility of multiple drug involvement should be considered. Hypotension and circulatory collapse should be treated with appropriate measures, such as intravenous fluids and/or sympathomimetic agents (epinephrine and dopamine should not be used, since beta stimulation may worsen hypotension in the setting of risperidone-induced alpha blockade). In cases of severe extrapyramidal symptoms, anticholinergic medication should be administered. Close medical supervision and monitoring should continue until the patient recovers.


RISPERDAL® (risperidone) is contraindicated in patients with a known hypersensitivity to the product.


Controlled Substance Class

RISPERDAL® (risperidone) is not a controlled substance.

Physical and Psychological Dependence

RISPERDAL® has not been systematically studied in animals or humans for its potential for abuse, tolerance, or physical dependence. While the clinical trials did not reveal any tendency for any drug-seeking behavior, these observations were not systematic and it is not possible to predict on the basis of this limited experience the extent to which a CNS-active drug will be misused, diverted, and/or abused once marketed. Consequently, patients should be evaluated carefully for a history of drug abuse, and such patients should be observed closely for signs of RISPERDAL® misuse or abuse (e.g., development of tolerance, increases in dose, drug-seeking behavior).

-- advertisement -- The American Red Cross
Home | About Us | Contact Us | Site usage policy | Privacy policy

All Rights reserved - Copyright DrugLib.com, 2006-2015