DrugLib.com — Drug Information Portal

Rx drug information, pharmaceutical research, clinical trials, news, and more

Rifater (Rifampin / Isoniazid / Pyrazinamide) - Warnings and Precautions

 
 



WARNING

Severe and sometimes fatal hepatitis associated with isoniazid therapy may occur and may develop even after many months of treatment. The risk of developing hepatitis is age related. Approximate case rates by age are: 0 per 1,000 for persons under 20 years of age, 3 per 1,000 for persons in the 20 to 34 year age group, 12 per 1,000 for persons in the 35 to 49 year age group, 23 per 1,000 for persons in the 50 to 64 year age group, and 8 per 1,000 for persons over 65 years of age. The risk of hepatitis is increased with daily consumption of alcohol. Precise data to provide a fatality rate for isoniazid-related hepatitis is not available; however, in a U.S. Public Health Service Surveillance Study of 13,838 persons taking isoniazid, there were 8 deaths among 174 cases of hepatitis.

Therefore, patients given isoniazid should be carefully monitored and interviewed at monthly intervals. Serum transaminase concentration becomes elevated in about 10% to 20% of patients, usually during the first few months of therapy, but it can occur at any time. Usually enzyme levels return to normal despite continuance of drug, but in some cases progressive liver dysfunction occurs. Patients should be instructed to report immediately any of the prodromal symptoms of hepatitis, such as fatigue, weakness, malaise, anorexia, nausea, or vomiting. If these symptoms appear or if signs suggestive of hepatic damage are detected, isoniazid should be discontinued promptly since continued use of the drug in these cases has been reported to cause a more severe form of liver damage.

Patients with tuberculosis should be given appropriate treatment with alternative drugs. If isoniazid must be reinstituted, it should be reinstituted only after symptoms and laboratory abnormalities have cleared. The drug should be restarted in very small and gradually increasing doses and should be withdrawn immediately if there is any indication of recurrent liver involvement. Treatment should be deferred in persons with acute hepatic diseases.

 

WARNINGS

RIFATER is a combination of the three drugs, rifampin, isoniazid, and pyrazinamide. Each of these individual drugs has been associated with liver dysfunction.

Rifampin

Rifampin has been shown to produce liver dysfunction. Fatalities associated with jaundice have occurred in patients with liver disease and in patients taking rifampin with other hepatotoxic agents. Because RIFATER contains both rifampin and isoniazid, it should only be given with caution and under strict medical supervision to patients with impaired liver function. In these patients, careful monitoring of liver function, especially serum glutamic pyruvic transaminase (SGPT) and serum glutamic oxaloacetic transaminase (SGOT) should be carried out prior to therapy and then every 2 to 4 weeks during therapy. If signs of hepatocellular damage occur, RIFATER should be withdrawn.

In some cases, hyperbilirubinemia resulting from competition between rifampin and bilirubin for excretory pathways of the liver at the cell level can occur in the early days of treatment. An isolated report showing a moderate rise in bilirubin and/or transaminase level is not in itself an indication for interrupting treatment; rather, the decision should be made after repeating the tests, noting trends in the levels, and considering them in conjunction with the patient's clinical condition.

Rifampin has enzyme-inducing properties, including induction of delta amino levulinic acid synthetase. Isolated reports have associated porphyria exacerbation with rifampin administration.

Isoniazid

(See the boxed WARNING.)

Since RIFATER contains isoniazid, ophthalmologic examinations (including ophthalmoscopy) should be done before treatment is started and periodically thereafter, even without occurrence of visual symptoms.

Pyrazinamide

Since RIFATER contains pyrazinamide, patients started on RIFATER should have baseline serum uric acid and liver function determinations. Patients with preexisting liver disease or those patients at increased risk for drug related hepatitis (e.g., alcohol abusers) should be followed closely.

Because it contains pyrazinamide, RIFATER should be discontinued and not be resumed if signs of hepatocellular damage or hyperuricemia accompanied by an acute gouty arthritis appear. If hyperuricemia accompanied by an acute gouty arthritis occurs without liver dysfunction, the patient should be transferred to a regimen not containing pyrazinamide.

PRECAUTIONS

General

RIFATER should be used with caution in patients with a history of diabetes mellitus, as diabetes management may be more difficult.

Rifampin

For treatment of tuberculosis, rifampin is usually administered on a daily basis. Doses of rifampin (>600 mg) given once or twice weekly have resulted in a higher incidence of adverse reactions, including the "flu syndrome" (fever, chills and malaise); hematopoietic reactions (leukopenia, thrombocytopenia, or acute hemolytic anemia); cutaneous, gastrointestinal, and hepatic reactions; shortness of breath; shock, anaphylaxis, and renal failure. Recent studies indicate that regimens using twice-weekly doses of rifampin 600 mg plus isoniazid 15 mg/kg are much better tolerated.

Rifampin is not recommended for intermittent therapy; the patient should be cautioned against intentional or accidental interruption of the daily dosage regimen since rare renal hypersensitivity reactions have been reported when therapy was resumed in such cases.

Rifampin has enzyme induction properties that can enhance the metabolism of endogenous substrates including adrenal hormones, thyroid hormones, and vitamin D.

Isoniazid

All drugs should be stopped and an evaluation of the patient should be made at the first sign of a hypersensitivity reaction.

Use of RIFATER, because it contains isoniazid, should be carefully monitored in the following:

  1. Patients who are receiving phenytoin (diphenylhydantoin) concurrently. Isoniazid may decrease the excretion of phenytoin or may enhance its effects. To avoid phenytoin intoxication, appropriate adjustment of the anticonvulsant dose should be made.
  2. Daily users of alcohol. Daily ingestion of alcohol may be associated with a higher incidence of isoniazid hepatitis.
  3. Patients with current chronic liver disease or severe renal dysfunction.

Pyrazinamide

Pyrazinamide inhibits renal excretion of urates, frequently resulting in hyperuricemia which is usually asymptomatic. If hyperuricemia is accompanied by acute gouty arthritis, RIFATER, because it contains pyrazinamide, should be discontinued.

Information for Patients

Food Interactions

Because isoniazid has some monoamine oxidase inhibiting activity, an interaction with tyramine-containing foods (cheese, red wine) may occur. Diamine oxidase may also be inhibited, causing exaggerated response (e.g., headache, sweating, palpitations, flushing, hypotension) to foods containing histamine (e.g., skipjack, tuna, other tropical fish). Tyramine- and histamine-containing foods should be avoided in patients receiving RIFATER.

RIFATER, because it contains rifampin, may produce a reddish coloration of the urine, sweat, sputum, and tears, and the patient should be forewarned of this. Soft contact lenses may be permanently stained.

The patient should be advised that the reliability of oral or other systemic hormonal contraceptives may be affected; consideration should be given to using alternative contraceptive measures.

Patients should be instructed to take RIFATER either 1 hour before or 2 hours after a meal with a full glass of water.

Patients should be instructed to notify their physicians promptly if they experience any of the following: fever, loss of appetite, malaise, nausea and vomiting, darkened urine, yellowish discoloration of the skin and eyes, pain or swelling of the joints.

Compliance with the full course of therapy must be emphasized, and the importance of not missing any doses must be stressed.

Laboratory Tests

Adults treated for tuberculosis with RIFATER should have baseline measurements of hepatic enzymes, bilirubin, serum creatinine, a complete blood count (CBC) and platelet count (or estimate), and blood uric acid.

Patients should be seen at least monthly during therapy and should be specifically questioned concerning symptoms associated with adverse reactions. All patients with abnormalities should have follow-up, including laboratory testing, if necessary. Routine laboratory monitoring for toxicity in people with normal baseline measurements is generally not necessary.

Drug Interactions

Rifampin

Healthy subjects who received rifampin 600 mg once daily concomitantly with saquinavir 1000 mg/ritonavir 100 mg twice daily (ritonavir-boosted saquinavir) developed severe hepatocellular toxicity. Therefore, concomitant use of these medications is contraindicated. (See CONTRAINDICATIONS.)

Enzyme Induction: Rifampin is known to induce certain cytochrome P-450 enzymes. Coadministration of RIFATER, because it contains rifampin, with drugs that undergo biotransformation through these metabolic pathways may accelerate elimination. To maintain optimum therapeutic blood levels, dosages of drugs metabolized by these enzymes may require adjustment when starting or stopping concomitantly administered rifampin.

Rifampin has been reported to substantially decrease the plasma concentrations of the following antiviral drugs: atazanavir, darunavir, fosamprenavir, saquinavir, and tipranavir. These antiviral drugs must not be co-administered with rifampin. (See CONTRAINDICATIONS.)

Rifampin has been reported to accelerate the metabolism of the following drugs: anticonvulsants (e.g., phenytoin), digitoxin, antiarrhythmics (e.g., disopyramide, mexiletine, quinidine, tocainide), oral anticoagulants, antifungals (e.g., fluconazole, itraconazole, ketoconazole), barbiturates, beta-blockers, calcium channel blockers (e.g., diltiazem, nifedipine, verapamil), chloramphenicol, clarithromycin, fluoroquinolones (e.g., ciprofloxacin), corticosteroids, cyclosporine, cardiac glycoside preparations, clofibrate, oral or other systemic hormonal contraceptives, dapsone, diazepam, doxycycline, haloperidol, oral hypoglycemic agents (sulfonylureas), levothyroxine, methadone, narcotic analgesics, progestins, quinine, tacrolimus, theophylline, tricyclic antidepressants (e.g., amitriptyline, nortriptyline), and zidovudine. It may be necessary to adjust dosages of these drugs if they are given concurrently with RIFATER since it contains rifampin.

Patients using oral or other systemic hormonal contraceptives should be advised to change to nonhormonal methods of birth control during rifampin therapy.

Rifampin has been observed to increase the requirements for anticoagulant drugs of the coumarin type. In patients receiving anticoagulants and RIFATER concurrently, it is recommended that the prothrombin time be performed daily or as frequently as necessary to establish and maintain the required dose of anticoagulant.

When the two drugs were taken concomitantly, decreased concentrations of atovaquone and increased concentrations of rifampin were observed.

Concurrent use of ketoconazole and rifampin has resulted in decreased serum concentration of both drugs. Concurrent use of rifampin and enalapril has resulted in decreased concentrations of enalaprilat, the active metabolite of enalapril. Since RIFATER contains rifampin, dosage adjustments should be made if RIFATER is concurrently administered with ketoconazole or enalapril if indicated by the patient's clinical condition.

Other Interactions

Concomitant antacid administration may reduce the absorption of rifampin. Daily doses of RIFATER, because it contains rifampin, should be given at least 1 hour before the ingestion of antacids.

Probenecid and cotrimoxazole have been reported to increase the blood level of rifampin.

When rifampin is given concomitantly with either halothane or isoniazid the potential for hepatotoxicity is increased. The concomitant use of RIFATER, because it contains both rifampin and isoniazid, and halothane should be avoided. Patients receiving both rifampin and isoniazid as in RIFATER should be monitored closely for hepatotoxicity. (See the boxed WARNING)

Plasma concentrations of sulfapyridine may be reduced following the concomitant administration of sulfasalazine and RIFATER, because it contains rifampin. This finding may be the result of alteration in the colonic bacteria responsible for the reduction of sulfasalazine to sulfapyridine and mesalamine.

Isoniazid

Enzyme Inhibition: Isoniazid is known to inhibit certain cytochrome P-450 enzymes. Coadministration of isoniazid with drugs that undergo biotransformation through these metabolic pathways may decrease elimination. Consequently, dosages of drugs metabolized by these enzymes may require adjustment when starting or stopping concomitantly administered RIFATER, because it contains isoniazid, to maintain optimum therapeutic blood levels.

Isoniazid has been reported to inhibit the metabolism of the following drugs: anticonvulsants (e.g., carbamazepine, phenytoin, primidone, valproic acid), benzodiazepines (e.g., diazepam), haloperidol, ketoconazole, theophylline, and warfarin. It may be necessary to adjust the dosages of these drugs if they are given concurrently with RIFATER because it contains isoniazid. The impact of the competing effects of rifampin and isoniazid on the metabolism of these drugs is unknown.

Other Interactions

Concomitant antacid administration may reduce the absorption of isoniazid. Ingestion with food may also reduce the absorption of isoniazid. Daily doses of RIFATER, because it contains isoniazid, should be given on an empty stomach at least 1 hour before the ingestion of antacids or food.

Corticosteroids (e.g., prednisolone) may decrease the serum concentration of isoniazid by increasing acetylation rate and/or renal clearance. Para-aminosalicylic acid may increase the plasma concentration and elimination half-life of isoniazid by competition of acetylating enzymes.

Pharmacodynamic Interactions

Daily ingestion of alcohol may be associated with a higher incidence of isoniazid hepatitis. Isoniazid, when given concomitantly with rifampin, has been reported to increase the hepatotoxicity of both drugs. Patients receiving both rifampin and isoniazid as in RIFATER should be monitored closely for hepatotoxicity.

The CNS effects of meperidine (drowsiness), cycloserine (dizziness, drowsiness), and disulfiram (acute behavioral and coordination changes) may be exaggerated when concomitant RIFATER, because it contains isoniazid, is given. Concurrent RIFATER, because it contains isoniazid, and levodopa administration may produce symptoms of excess catecholamine stimulation (agitation, flushing, palpitations) or lack of levodopa effect.

Isoniazid may produce hyperglycemia and lead to loss of glucose control in patients on oral hypoglycemics.

Fast acetylation of isoniazid may produce high concentrations of hydrazine that facilitate deflorination of enflurane. Renal function should be monitored in patients receiving both RIFATER and enflurane.

Food Interactions

Because isoniazid has some monoamine oxidase inhibiting activity, an interaction with tyramine-containing foods (cheese, red wine) may occur. Diamine oxidase may also be inhibited, causing exaggerated response (e.g., headache, sweating, palpitations, flushing, hypotension) to foods containing histamine (e.g., skipjack, tuna, other tropical fish). Tyramine- and histamine-containing foods should be avoided by patients receiving RIFATER.

Drug/Laboratory Test Interactions

Rifampin

Cross-reactivity and false-positive urine screening tests for opiates have been reported in patients receiving rifampin when using the KIMS (Kinetic Interaction of Microparticles in Solution) method (e.g., Abuscreen OnLine opiates assay; Roche Diagnostic Systems). Confirmatory tests, such as gas chromatography/mass spectrometry, will distinguish rifampin from opiates.

Therapeutic levels of rifampin have been shown to inhibit standard microbiological assays for serum folate and vitamin B12. Therefore, alternative assay methods should be considered. Transient abnormalities in liver function tests (e.g., elevation in serum bilirubin, alkaline phosphatase and serum transaminases), and reduced biliary excretion of contrast media used for visualization of the gallbladder have also been observed. Therefore, these tests should be performed before the morning dose of RIFATER.

Rifampin and isoniazid have been reported to alter vitamin D metabolism. In some cases, reduced levels of circulating 25-hydroxy vitamin D and 1,25-dihydroxy vitamin D have been accompanied by reduced serum calcium and phosphate, and elevated parathyroid hormone.

Pyrazinamide

Pyrazinamide has been reported to interfere with ACETEST® and KETOSTIX® urine tests to produce a pink-brown color.

Carcinogenesis, Mutagenesis, Impairment of Fertility

Increased frequency of chromosomal aberrations was observed in vitro in lymphocytes obtained from patients treated with combinations of rifampin, isoniazid, and pyrazinamide and combinations of streptomycin, rifampin, isoniazid, and pyrazinamide.

Rifampin

A few cases of accelerated growth of lung carcinoma have been reported in man, but a causal relationship with the drug has not been established. Hepatomas were increased in female (C3Hf/DP) mice dosed for 60 weeks with rifampicin followed by an observation period of 46 weeks, at 20 to 120 mg/kg (equivalent to 0.1 to 0.5 times the maximum dosage used clinically, based on body surface area comparisons). There was no evidence of tumorigenicity in male C3Hf/DP mice or, in similar studies in BALB/c mice, or in two year studies in Wistar rats.

There was no evidence of mutagenicity in both prokaryotic (Salmonella typhi, Escherichia coli) and eukaryotic (Saccharomyces cerevisiae) bacteria, Drosophila melanogaster, or ICR/Ha Swiss mice. An increase in chromatid breaks was noted when whole blood cell cultures were treated with rifampin. Increased frequency of chromosomal aberrations was observed in vitro in lymphocytes obtained from patients treated with combinations of rifampin, isoniazid, and pyrazinamide and combinations of streptomycin, rifampin, isoniazid, and pyrazinamide.

Isoniazid

Isoniazid has been reported to induce pulmonary tumors in a number of strains of mice.

Pyrazinamide

Pyrazinamide was not carcinogenic in lifetime bioassays in rats (at doses up to 500 mg/kg, about three times the recommended human dose, based on body surface area comparisons) or mice (at doses up to 2000 mg/kg, about five times the recommended human dose, based on body surface area comparisons).

Pyrazinamide was not mutagenic in the Ames bacterial test, but induced chromosomal aberrations in human lymphocyte cell cultures.

Pregnancy – Teratogenic Effects

Category C. Although animal reproduction studies have not been conducted with RIFATER teratogenic effects (including cleft palate and spina bifida) have been observed in rodents treated with rifampin at doses 0.2 to 2 times the maximum recommended human dose, based on body surface area comparisons. There are no adequate and well-controlled studies of RIFATER in pregnant women. RIFATER should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

Rifampin

Congenital malformations, primarily spina bifida were increased in the offspring of pregnant rats given rifampin during organogenesis at oral doses of 150 to 250 mg/kg/day (about 1 to 2 times the maximum recommended human dose based on body surface area comparisons). Cleft palate was increased in a dose-dependent fashion in fetuses of pregnant mice treated at oral doses of 50 to 200 mg/kg (about 0.2 to 0.8 times the maximum recommended human dose based on body surface area comparisons). Imperfect osteogenesis and embryotoxicity were also reported in pregnant rabbits given rifampin at oral doses up to 200 mg/kg/day (about 3 times the maximum recommended daily human dose based on body surface area comparisons). Although there are no adequate and well-controlled studies in pregnant women, rifampin has been reported to cross the placental barrier and appear in cord blood.

Isoniazid

It has been reported that in both rats and rabbits, isoniazid may exert an embryocidal effect when administered orally during pregnancy, although no isoniazid-related congenital anomalies have been found in reproduction studies in mammalian species (mice, rats, and rabbits).

Pyrazinamide

Animal reproductive studies have not been conducted with pyrazinamide. It is also not known whether pyrazinamide can cause fetal harm when administered to a pregnant woman.

Pregnancy – Non-Teratogenic Effects

When administered during the last few weeks of pregnancy, rifampin can cause post-natal hemorrhages in the mother and infant for which treatment with vitamin K may be indicated.

Rifampin

When administered during the last few weeks of pregnancy, rifampin can cause postnatal hemorrhages in the mother and infant. In this case, treatment with vitamin K may be indicated for postnatal hemorrhage.

Nursing Mothers

Since rifampin, isoniazid, and pyrazinamide are known to pass into maternal breast milk, a decision should be made whether to discontinue nursing or to discontinue RIFATER, taking into account the importance of the drug to the mother.

Pediatric Use

Safety and effectiveness in pediatric patients under the age of 15 have not been established. (See CLINICAL PHARMACOLOGY, General; See also DOSAGE AND ADMINISTRATION)

Geriatric Use

Clinical studies of RIFATER did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. Caution should therefore be observed in using rifampin and isoniazid in elderly patients. (See WARNINGS)

Page last updated: 2013-04-19

-- advertisement -- The American Red Cross
 
Home | About Us | Contact Us | Site usage policy | Privacy policy

All Rights reserved - Copyright DrugLib.com, 2006-2017