DrugLib.com — Drug Information Portal

Rx drug information, pharmaceutical research, clinical trials, news, and more

Pexeva (Paroxetine Mesylate) - Description and Clinical Pharmacology

 
 



DESCRIPTION

PEXEVA® (paroxetine mesylate) is an orally administered psychotropic drug with a chemical structure related to paroxetine hydrochloride (Paxil®). It is the mesylate salt of a phenylpiperidine compound identified chemically as (-)-trans-4R-(4'-fluorophenyl)-3S-[(3',4'-methylenedioxyphenoxy) methyl] piperidine mesylate and has the empirical formula of C19H20FNO3•CH3SO3H. The molecular weight is 425.5 (329.4 as free base). The structural formula is:

Paroxetine mesylate is an odorless, off-white powder, having a melting point range of 147° to 150°C and a solubility of more than 1 g/ml in water.

Tablets

Each oval, film-coated tablet contains paroxetine mesylate equivalent to paroxetine as follows: 10 mg (white); 20 mg (scored, dark orange); 30 mg (yellow); 40 mg (rose). Inactive ingredients consist of dibasic calcium phosphate, hydroxypropyl methylcellulose, hydroxypropylcellulose, magnesium stearate, sodium starch glycolate, titanium dioxide, ferric oxide red (C.I. 77491) (20 mg and 40 mg only) and ferric oxide yellow (C.I. 77492) (20 mg, 30 mg, and 40 mg only).

CLINICAL PHARMACOLOGY

Pharmacodynamics

The efficacy of paroxetine in the treatment of MDD, OCD, panic disorder (PD), and generalized anxiety disorder (GAD) is presumed to be linked to potentiation of serotonergic activity in the central nervous system resulting from inhibition of neuronal reuptake of serotonin (5-hydroxy-tryptamine, 5-HT). Studies at clinically relevant doses in humans have demonstrated that paroxetine blocks the uptake of serotonin into human platelets. In vitro studies in animals also suggest that paroxetine is a potent and highly selective inhibitor of neuronal serotonin reuptake and has only very weak effects on norepinephrine and dopamine neuronal reuptake. In vitro radioligand binding studies indicate that paroxetine has little affinity for muscarinic alpha1-, alpha2-, beta-adrenergic-, dopamine (D2)-, 5-HT1-, 5-HT2-, and histamine (H1)-receptors; antagonism of muscarinic, histaminergic, and alpha1-adrenergic receptors has been associated with various anticholinergic, sedative, and cardiovascular effects for other psychotropic drugs.

Because the relative potencies of paroxetine's major metabolites are at most 1/50 of the parent compound, they are essentially inactive.

Pharmacokinetics

Paroxetine mesylate is completely absorbed after oral dosing of the mesylate salt. In a study in which normal male subjects (n=25) received paroxetine 30 mg tablets daily for 24 days, steady-state paroxetine concentrations were achieved by approximately 13 days for most subjects, although it may take substantially longer in an occasional patient. At steady state, mean values of Cmax, Tmax, Cmin, and T1/2 were 81.3 ng/ml (CV 41%), 8.1 hr. (CV 56%), 43.2 ng/ml (CV 52%), and 33.2 hr. (CV 52%), respectively. The steady-state Cmax and Cmin values were about 7 and 10 times what would be predicted from single dose studies. Steady-state drug exposure based on AUC0-24 was about 10 times greater than would have been predicted from single-dose data in these subjects. The excess accumulation is a consequence of the fact that one of the enzymes that metabolizes paroxetine is readily saturable.

In steady-state dose proportionality studies involving elderly and nonelderly patients, at doses of 20 to 40 mg daily for the elderly and 20 to 50 mg daily for the nonelderly, some nonlinearity was observed in both populations, again reflecting a saturable metabolic pathway. In comparison to Cmin values after 20 mg daily, values after 40 mg were only about 2 to 3 times greater than doubled.

The effects of food on the bioavailability of paroxetine were studied in subjects administered a single dose with and without food. AUC was only slightly increased (6%) when drug was administered with food but the Cmax was 29% greater, while the time to reach peak plasma concentration decreased from 6.4 hours post-dosing to 4.9 hours.

Paroxetine is extensively metabolized after oral administration. The principal metabolites are polar and conjugated products of oxidation and methylation, which are readily cleared. Conjugates with glucuronic acid and sulfate predominate, and major metabolites have been isolated and identified. Data indicate that the metabolites have no more than 1/50 the potency of the parent compound at inhibiting serotonin uptake. The metabolism of paroxetine is accomplished in part by cytochrome CYP2D6. Saturation of this enzyme at clinical doses appears to account for the nonlinearity of paroxetine kinetics with increasing dose and increasing duration of treatment. The role of this enzyme in paroxetine metabolism also suggests potential drug-drug interactions (see PRECAUTIONS).

Approximately 64% of a 30 mg oral solution dose of paroxetine was excreted in the urine with 2% as the parent compound and 62% as metabolites over a 10-day post-dosing period. About 36% was excreted in the feces (probably via the bile), mostly as metabolites and less than 1% as the parent compound over the 10-day post-dosing period.

In a meta analysis of paroxetine from 4 studies done in healthy volunteers following multiple dosing of 20 mg/day to 40 mg/day, males did not exhibit a significantly lower Cmax or AUC than females.

Distribution: Paroxetine distributes throughout the body, including the CNS, with only 1% remaining in the plasma.

Protein Binding: Approximately 95% and 93% of paroxetine is bound to plasma protein at 100 ng/ml and 400 ng/ml, respectively. Under clinical conditions, paroxetine concentrations would normally be less than 400 ng/ml. Paroxetine does not alter the in vitro protein binding of phenytoin or warfarin.

Renal and Liver Disease: Increased plasma concentrations of paroxetine occur in subjects with renal and hepatic impairment. The mean plasma concentrations in patients with creatinine clearance below 30 ml/min was approximately 4 times greater than seen in normal volunteers. Patients with creatinine clearance of 30 to 60 ml/min and patients with hepatic functional impairment had about a 2-fold increase in plasma concentrations (AUC, Cmax).

The initial dosage should therefore be reduced in patients with severe renal or hepatic impairment, and upward titration, if necessary, should be at increased intervals (see DOSAGE AND ADMINISTRATION).

Elderly Patients: In a multiple-dose study in the elderly at daily paroxetine doses of 20, 30, and 40 mg, Cmin concentrations were about 70% to 80% greater than the respective Cmin concentrations in nonelderly subjects. Therefore the initial dosage in the elderly should be reduced (see DOSAGE AND ADMINISTRATION).

Drug-Drug Interactions:   In vitro drug interaction studies reveal that paroxetine inhibits CYP2D6. Clinical drug interaction studies have been performed with substrates of CYP2D6 and show that paroxetine can inhibit the metabolism of drugs metabolized by CYP2D6 including desipramine, risperidone, and atomoxetine (see PRECAUTIONS—Drug Interactions).

Clinical Trials

Major Depressive Disorder

The efficacy of paroxetine as a treatment for MDD has been established in 6 placebo-controlled studies of patients with MDD (ages 18 to 73). In these studies paroxetine was shown to be significantly more effective than placebo in treating MDD by at least 2 of the following measures: Hamilton Depression Rating Scale (HDRS), the Hamilton depressed mood item, and the Clinical Global Impression (CGI)-Severity of Illness. Paroxetine was significantly better than placebo in improvement of the HDRS sub-factor scores, including the depressed mood item, sleep disturbance factor, and anxiety factor.

A study of outpatients with MDD who had responded to paroxetine (HDRS total score <8) during an initial 8-week open treatment phase and were then randomized to continuation on paroxetine or placebo for 1 year demonstrated a significantly lower relapse rate for patients taking paroxetine (15%) compared to those on placebo (39%). Effectiveness was similar for male and female patients.

Obsessive Compulsive Disorder

The effectiveness of paroxetine in the treatment OCD was demonstrated in two 12-week multicenter placebo-controlled studies of adult outpatients (Studies 1 and 2). Patients in all studies had moderate to severe OCD (DSM-IIIR) with mean baseline ratings on the Yale Brown Obsessive Compulsive Scale (YBOCS) total score ranging from 23 to 26. Study 1, a dose-range finding study where patients were treated with fixed doses of 20, 40, or 60 mg of paroxetine/day demonstrated that daily doses of paroxetine 40 and 60 mg are effective in the treatment of OCD. Patients receiving doses of 40 and 60 mg paroxetine experienced a mean reduction of approximately 6 and 7 points, respectively, on the YBOCS total score which was significantly greater than the approximate 4-point reduction at 20 mg and a 3-point reduction in the placebo-treated patients. Study 2 was a flexible dose study comparing paroxetine (20 to 60 mg daily) with clomipramine (25 to 250 mg daily). In this study, patients receiving paroxetine experienced a mean reduction of approximately 7 points on the YBOCS total score, which was significantly greater than the mean reduction of approximately 4 points in the placebo-treated patients.

The following table provides the outcome classification by treatment group on Global Improvement items of the Clinical Global Impressions (CGI) scale for Study 1.

Outcome Classification (%) on CGI-Global Improvement Item for Completers in Study 1
Outcome
Classification
Placebo
(N=74)
Paroxetine
20 mg
(N=75)
Paroxetine
40 mg
(N=66)
Paroxetine
60 mg
(N=66)
Worse 14% 7% 7% 3%
No Change 44% 35% 22% 19%
Minimally Improved 24% 33% 29% 34%
Much Improved 11% 18% 22% 24%
Very Much Improved 7% 7% 20% 20%

Subgroup analyses did not indicate that there were any differences in treatment outcomes as a function of age or gender.

The long-term maintenance effects of paroxetine in OCD were demonstrated in a long-term extension to Study 1. Patients who were responders on paroxetine during the 3-month double-blind phase and a 6-month extension on open-label paroxetine (20 to 60 mg/day) were randomized to either paroxetine or placebo in a 6-month double-blind relapse prevention phase. Patients randomized to paroxetine were significantly less likely to relapse than comparably treated patients who were randomized to placebo.

Panic Disorder

The effectiveness of paroxetine in the treatment of PD was demonstrated in three 10- to 12-week multicenter, placebo-controlled studies of adult outpatients (Studies 1-3). Patients in all studies had PD (DSM-IIIR), with or without agoraphobia. In these studies, paroxetine was shown to be significantly more effective than placebo in treating PD by at least 2 out of 3 measures of panic attack frequency and on the Clinical Global Impression Severity of Illness score.

Study 1 was a 10-week dose-range finding study: patients were treated with fixed paroxetine doses of 10, 20, or 40 mg/day or placebo. A significant difference from placebo was observed only for the 40 mg/day group. At endpoint, 76% of patients receiving paroxetine 40 mg/day were free of panic attacks, compared to 44% of placebo-treated patients.

Study 2 was a 12-week flexible-dose study comparing paroxetine (10 to 60 mg daily) and placebo. At endpoint, 51% of paroxetine patients were free of panic attacks compared to 32% of placebo-treated patients.

Study 3 was a 12-week flexible-dose study comparing paroxetine (10 to 60 mg daily) to placebo in patients concurrently receiving standardized cognitive behavioral therapy. At endpoint, 33% of the paroxetine-treated patients showed a reduction to 0 or 1 panic attacks compared to 14% of placebo patients.

In both Studies 2 and 3, the mean paroxetine dose for completers at endpoint was approximately 40 mg/day of paroxetine.

Long-term maintenance effects of paroxetine in PD were demonstrated in an extension to Study 1. Patients who were responders during the 10-week double-blind phase and during a 3-month double-blind extension phase were randomized to either paroxetine (10, 20, or 40 mg/day) or placebo in a 3-month double-blind relapse prevention phase. Patients randomized to paroxetine were significantly less likely to relapse than comparably treated patients who were randomized to placebo.

Subgroup analyses did not indicate that there were any differences in treatment outcomes as a function of age or gender.

Generalized Anxiety Disorder

The effectiveness of paroxetine in the treatment of Generalized Anxiety Disorder (GAD) was demonstrated in two 8-week, multicenter, placebo-controlled studies (Studies 1 and 2) of adult outpatients with GAD (DSM-IV).

Study 1 was an 8-week study comparing fixed paroxetine doses of 20 mg or 40 mg/day with placebo. Doses of 20 mg or 40 mg of paroxetine were both demonstrated to be significantly superior to placebo on the Hamilton Rating Scale for Anxiety (HAM-A) total score. There was not sufficient evidence in this study to suggest a greater benefit for the 40 mg/day dose compared to the 20 mg/day dose.

Study 2 was a flexible-dose study comparing paroxetine (20 mg to 50 mg daily) and placebo. Paroxetine demonstrated statistically significant superiority over placebo on the Hamilton Rating Scale for Anxiety (HAM-A) total score. A third study, also flexible-dose comparing paroxetine (20 mg to 50 mg daily), did not demonstrate statistically significant superiority of paroxetine over placebo on the Hamilton Rating Scale for Anxiety (HAM-A) total score, the primary outcome.

Subgroup analyses did not indicate differences in treatment outcomes as a function of race or gender. There were insufficient elderly patients to conduct subgroup analyses on the basis of age.

In a longer-term trial, 566 patients meeting DSM-IV criteria for GAD, who had responded during a single-blind, 8-week acute treatment phase with 20 to 50 mg/day of paroxetine, were randomized to continuation of paroxetine at their same dose, or to placebo, for up to 24 weeks of observation for relapse. Response during the single-blind phase was defined by having a decrease of ≥2 points compared to baseline on the CGI-Severity of Illness scale, to a score of ≤3. Relapse during the double-blind phase was defined as an increase of ≥2 points compared to baseline on the CGI-Severity of Illness scale to a score of ≥4, or withdrawal due to lack of efficacy. Patients receiving continued paroxetine experienced a significantly lower relapse rate over the subsequent 24 weeks compared to those receiving placebo.

-- advertisement -- The American Red Cross
 
Home | About Us | Contact Us | Site usage policy | Privacy policy

All Rights reserved - Copyright DrugLib.com, 2006-2017