DrugLib.com — Drug Information Portal

Rx drug information, pharmaceutical research, clinical trials, news, and more

Mirapex (Pramipexole Dihydrochloride) - Drug Interactions, Contraindications, Overdosage, etc



Carbidopa/levodopa: Carbidopa/levodopa did not influence the pharmacokinetics of pramipexole in healthy volunteers (N=10). Pramipexole did not alter the extent of absorption (AUC) or the elimination of carbidopa/levodopa, although it caused an increase in levodopa Cmax by about 40% and a decrease in Tmax from 2.5 to 0.5 hours.

Selegiline: In healthy volunteers (N=11), selegiline did not influence the pharmacokinetics of pramipexole.

Amantadine: Population pharmacokinetic analysis suggests that amantadine is unlikely to alter the oral clearance of pramipexole (N=54).

Cimetidine: Cimetidine, a known inhibitor of renal tubular secretion of organic bases via the cationic transport system, caused a 50% increase in pramipexole AUC and a 40% increase in half-life (N=12).

Probenecid: Probenecid, a known inhibitor of renal tubular secretion of organic acids via the anionic transporter, did not noticeably influence pramipexole pharmacokinetics (N=12).

Other drugs eliminated via renal secretion: Population pharmacokinetic analysis suggests that coadministration of drugs that are secreted by the cationic transport system (eg, cimetidine, ranitidine, diltiazem, triamterene, verapamil, quinidine, and quinine) decreases the oral clearance of pramipexole by about 20%, while those secreted by the anionic transport system (eg, cephalosporins, penicillins, indomethacin, hydrochlorothiazide, and chlorpropamide) are likely to have little effect on the oral clearance of pramipexole.

CYP interactions: Inhibitors of cytochrome P450 enzymes would not be expected to affect pramipexole elimination because pramipexole is not appreciably metabolized by these enzymes in vivo or in vitro. Pramipexole does not inhibit CYP enzymes CYP1A2, CYP2C9, CYP2C19, CYP2E1, and CYP3A4. Inhibition of CYP2D6 was observed with an apparent Ki of 30 ┬ÁM, indicating that pramipexole will not inhibit CYP enzymes at plasma concentrations observed following the highest recommended clinical dose (1.5 mg tid).

Dopamine antagonists: Since pramipexole is a dopamine agonist, it is possible that dopamine antagonists, such as the neuroleptics (phenothiazines, butyrophenones, thioxanthenes) or metoclo- pramide, may diminish the effectiveness of MIRAPEX (pramipexole dihydrochloride).

Drug/Laboratory Test Interactions: There are no known interactions between MIRAPEX (pramipexole dihydrochloride) and laboratory tests.

Carcinogenesis, Mutagenesis, Impairment of Fertility: Two-year carcinogenicity studies with pramipexole have been conducted in mice and rats. Pramipexole was administered in the diet to Chbb:NMRI mice at doses of 0.3, 2, and 10 mg/kg/day (0.3, 2.2, and 11 times the highest recommended clinical dose [1.5 mg tid] on a mg/m2 basis). Pramipexole was administered in the diet to Wistar rats at 0.3, 2, and 8 mg/kg/day (plasma AUCs equal to 0.3, 2.5, and 12.5 times the AUC in humans receiving 1.5 mg tid). No significant increases in tumors occurred in either species.

Pramipexole was not mutagenic or clastogenic in a battery of assays, including the in vitro Ames assay, V79 gene mutation assay for HGPRT mutants, chromosomal aberration assay in Chinese hamster ovary cells, and in vivo mouse micronucleus assay.

In rat fertility studies, pramipexole at a dose of 2.5 mg/kg/day (5.4 times the highest clinical dose on a mg/m2 basis), prolonged estrus cycles and inhibited implantation. These effects were associated with reductions in serum levels of prolactin, a hormone necessary for implantation and maintenance of early pregnancy in rats.

Pregnancy: Pregnancy Category C. When pramipexole was given to female rats throughout pregnancy, implantation was inhibited at a dose of 2.5 mg/kg/day (5.4 times the highest clinical dose on a mg/m2 basis). Administration of 1.5 mg/kg/day of pramipexole to pregnant rats during the period of organogenesis (gestation days 7 through 16) resulted in a high incidence of total resorption of embryos. The plasma AUC in rats dosed at this level was 4.3 times the AUC in humans receiving 1.5 mg tid. These findings are thought to be due to the prolactin-lowering effect of pramipexole, since prolactin is necessary for implantation and maintenance of early pregnancy in rats (but not rabbits or humans). Because of pregnancy disruption and early embryonic loss in these studies, the teratogenic potential of pramipexole could not be adequately evaluated. There was no evidence of adverse effects on embryo-fetal development following administration of up to 10 mg/kg/day to pregnant rabbits during organogenesis (plasma AUC was 71 times that in humans receiving 1.5 mg tid). Postnatal growth was inhibited in the offspring of rats treated with 0.5 mg/kg/day (approximately equivalent to the highest clinical dose on a mg/m2 basis) or greater during the latter part of pregnancy and throughout lactation.

There are no studies of pramipexole in human pregnancy. Because animal reproduction studies are not always predictive of human response, pramipexole should be used during pregnancy only if the potential benefit outweighs the potential risk to the fetus.

Nursing Mothers: A single-dose, radio-labeled study showed that drug-related materials were excreted into the breast milk of lactating rats. Concentrations of radioactivity in milk were three to six times higher than concentrations in plasma at equivalent time points.

Other studies have shown that pramipexole treatment resulted in an inhibition of prolactin secretion in humans and rats.

It is not known whether this drug is excreted in human milk. Because many drugs are excreted in human milk and because of the potential for serious adverse reactions in nursing infants from pramipexole, a decision should be made as to whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother.

Pediatric Use: The safety and efficacy of MIRAPEX® (pramipexole dihydrochloride) in pediatric patients has not been established.

Geriatric Use: Pramipexole total oral clearance was approximately 30% lower in subjects older than 65 years compared with younger subjects, because of a decline in pramipexole renal clearance due to an age-related reduction in renal function. This resulted in an increase in elimination half-life from approximately 8.5 hours to 12 hours. In clinical studies, 38.7% of patients were older than 65 years. There were no apparent differences in efficacy or safety between older and younger patients, except that the relative risk of hallucination associated with the use of MIRAPEX (pramipexole dihydrochloride) was increased in the elderly.


There is no clinical experience with massive overdosage. One patient, with a 10-year history of schizophrenia, took 11 mg/day of pramipexole for 2 days; this is two to three times the protocol recommended daily dose. No adverse events were reported related to the increased dose. Blood pressure remained stable although pulse rate increased to between 100 and 120 beats/minute. The patient withdrew from the study at the end of week 2 due to lack of efficacy.

There is no known antidote for overdosage of a dopamine agonist. If signs of central nervous system stimulation are present, a phenothiazine or other butyrophenone neuroleptic agent may be indicated; the efficacy of such drugs in reversing the effects of overdosage has not been assessed. Management of overdose may require general supportive measures along with gastric lavage, intravenous fluids, and electrocardiogram monitoring.


MIRAPEX (pramipexole dihydrochloride) Tablets are contraindicated in patients who have demonstrated hypersensitivity to the drug or its ingredients.

-- advertisement -- The American Red Cross
Home | About Us | Contact Us | Site usage policy | Privacy policy

All Rights reserved - Copyright DrugLib.com, 2006-2015