DrugLib.com — Drug Information Portal

Rx drug information, pharmaceutical research, clinical trials, news, and more

Lithium Carbonate (Lithium Carbonate) - Warnings and Precautions

 
 



WARNING

Lithium toxicity is closely related to serum lithium levels, and can occur at doses close to therapeutic levels. Facilities for prompt and accurate serum lithium determinations should be available before initiating therapy (see DOSAGE AND ADMINISTRATION).

 

WARNINGS

Lithium should generally not be given to patients with significant renal or cardiovascular disease, severe debilitation or dehydration, or sodium depletion, since the risk of lithium toxicity is very high in such patients. If the psychiatric indication is life-threatening, and if such a patient fails to respond to other measures, lithium treatment may be undertaken with extreme caution, including daily serum lithium determinations and adjustment to the usually low doses ordinarily tolerated by these individuals. In such instances, hospitalization is a necessity.

Chronic lithium therapy may be associated with diminution of renal concentrating ability, occasionally presenting as nephrogenic diabetes insipidus, with polyuria and polydipsia. Such patients should be carefully managed to avoid dehydration with resulting lithium retention and toxicity. This condition is usually reversible when lithium is discontinued.

Morphologic changes with glomerular and interstitial fibrosis and nephron atrophy have been reported in patients on chronic lithium therapy. Morphologic changes have also been seen in manic-depressive patients never exposed to lithium. The relationship between renal functional and morphologic changes and their association with lithium therapy have not been established.

When kidney function is assessed, for baseline data prior to starting lithium therapy or thereafter, routine urinalysis and other tests may be used to evaluate tubular function (e.g., urine specific gravity or osmolality following a period of water deprivation, or 24-hour urine volume) and glomerular function (e.g., serum creatinine or creatinine clearance). During lithium therapy, progressive or sudden changes in renal function, even within the normal range, indicate the need for reevaluation of treatment.

An encephalopathic syndrome (characterized by weakness, lethargy, fever, tremulousness and confusion, extrapyramidal symptoms, leukocytosis, elevated serum enzymes, BUN and FBS) has occurred in a few patients treated with lithium plus a neuroleptic. In some instances, the syndrome was followed by irreversible brain damage. Because of a possible causal relationship between these events and the concomitant administration of lithium and neuroleptics, patients receiving such combined therapy should be monitored closely for early evidence of neurologic toxicity and treatment discontinued promptly if such signs appear. This encephalopathic syndrome may be similar to or the same as neuroleptic malignant syndrome (NMS).

Lithium toxicity is closely related to serum lithium levels, and can occur at doses close to therapeutic levels (see DOSAGE AND ADMINISTRATION).

Outpatients and their families should be warned that the patient must discontinue lithium carbonate therapy and contact his physician if such clinical signs of lithium toxicity as diarrhea, vomiting, tremor, mild ataxia, drowsiness or muscular weakness occur.

Lithium carbonate may impair mental and/or physical abilities. Caution patients about activities requiring alertness (e.g., operating vehicles or machinery).

Lithium may prolong the effects of neuromuscular blocking agents. Therefore, neuromuscular blocking agents should be given with caution to patients receiving lithium.

Pregnancy: Adverse effects on implantation in rats, embryo viability in mice and metabolism in vitro of rat testes and human spermatozoa have been attributed to lithium, as have teratogenicity in subman-nalian species and cleft palates in mice.

In humans, lithium carbonate may cause fetal harm when administered to a pregnant woman. Data from lithium birth registries suggest an increase in cardiac and other anomalies, especially Ebstein's anomaly.

If this drug is used in women of childbearing potential, or during pregnancy, or if a patient becomes pregnant while taking this drug, the patient should be apprised of the potential hazard to the fetus.

Nursing Mothers: Lithium is excreted in human milk. Nursing should not be undertaken during lithium therapy except in rare and unusual circumstances where, in the view of the physician, the potential benefits to the mother outweigh possible hazards to the child.

Pediatric Use: Since information regarding the safety and effectiveness of lithium carbonate in children under 12 years of age is not available, its use in such patients is not recommended.

There has been a report of a transient syndrome of acute dystonia and hyperreflexia occurring in a 15 kg child who ingested 300 mg of lithium carbonate.

Geriatric Use: Elderly patients often require lower lithium dosages to achieve therapeutic serum levels. They may also exhibit adverse reactions at serum levels ordinarily tolerated by younger patients.

PRECAUTIONS

General:

The ability to tolerate lithium is greater during the acute manic phase and decreases when manic symptoms subside (see DOSAGE AND ADMINISTRATION).

The distribution space of lithium approximates that of total body water. Lithium is primarily excreted in urine with insignificant excretion in feces. Renal excretion of lithium is proportional to its plasma concentration. The half-life of elimination of lithium is approximately 24 hours. Lithium decreases sodium reabsorption by the renal tubules which could lead to sodium depletion. Therefore, it is essential for the patient to maintain a normal diet, including salt, and an adequate fluid intake (2500 to 3000 mL) at least during the initial stabilization period. Decreased tolerance to lithium has been reported to ensue from protracted sweating or diarrhea and, if such occur, supplemental fluid and salt should be administered under careful medical supervision and lithium intake reduced or suspended until the condition is resolved.

In addition to sweating and diarrhea, concomitant infection with elevated temperatures may also necessitate a temporary reduction or cessation of medication.

Previously existing underlying thyroid disorders do not necessarily constitute a contraindication to lithium treatment; where hypothyroidism exists, careful monitoring of thyroid function during lithium stabilization and maintenance allows for correction of changing thyroid parameters, if any; where hypothyroidism occurs during lithium stabilization and maintenance, supplemental thyroid treatment may be used.

Drug Interactions:

Caution should be used when lithium and diuretics are used concomitantly because diuretic-induced sodium loss may reduce the renal clearance of lithium and increase serum lithium levels with risk of lithium toxicity. Patients receiving such combined therapy should have serum lithium levels monitored closely and the lithium dosage adjusted if necessary.

Lithium levels should be closely monitored when patients initiate or discontinue NSAID use. In some cases, lithium toxicity has resulted from interactions between an NSAID and lithium. Indomethacin and piroxicam have been reported to increase significantly, steady-state plasma lithium concentrations. There is also evidence that other nonsteroidal anti-inflammatory agents, including the selective cyclooxgenase-2 (COX-2) inhibitors, have the same effect. In a study conducted in healthy subjects, mean steady-state lithium plasma levels increased approximately 17% in subjects receiving lithium 450 mg b.i.d. with celecoxib 200 mg b.i.d. as compared to subjects receiving lithium alone.

Concurrent use of metronidazole with lithium may provoke lithium toxicity due to reduced renal clearance. Patients receiving such combined therapy should be monitored closely.

There is evidence that angiotensin-converting enzyme inhibitors, such as enalapril and captopril, and angotension II receptor antagonists, such as losartan, may substantially increase steady-state plasma lithium levels, sometimes resulting in lithium toxicity. When such combinations are used, lithium dosage may need to be decreased, and plasma lithium levels should be measured more often.

Concurrent use of calcium channel blocking agents with lithium may increase the risk of neurotoxicity in the form of ataxia, tremors, nausea, vomiting, diarrhea and/or tinnitus. Caution is recommended.

The concomitant administration of lithium with selective serotonin reuptake inhibitors should be undertaken with caution as this combination has been reported to result in symptoms such as diarrhea, confusion, tremor, dizziness and agitation.

The following drugs can lower serum lithium concentrations by increasing urinary lithium excretion: acetazolamide, urea, xanthine preparations and alkalinizing agents such as sodium bicarbonate.

The following have also been shown to interact with lithium: methyldopa, phenytoin and carbamazepine.

Page last updated: 2008-07-31

-- advertisement -- The American Red Cross
 
Home | About Us | Contact Us | Site usage policy | Privacy policy

All Rights reserved - Copyright DrugLib.com, 2006-2014