DrugLib.com — Drug Information Portal

Rx drug information, pharmaceutical research, clinical trials, news, and more

Lipofen (Fenofibrate) - Description and Clinical Pharmacology

 
 



DESCRIPTION

LIPOFEN® (fenofibrate capsules, USP), is a lipid regulating agent available as hard gelatin capsules for oral administration. Each hard gelatin capsule contains 50 or 150 mg of fenofibrate, USP. The chemical name for fenofibrate is 2-[4-(4-chlorobenzoyl) phenoxy]-2-methyl-propanoic acid, 1-methylethyl ester with the following structural formula:

The empirical formula is C20H21O4C1 and the molecular weight is 360.83; fenofibrate is insoluble in water. The melting point is 79-82oC. Fenofibrate is a white solid which is stable under ordinary conditions.

LIPOFEN (fenofibrate capsules, USP) meets USP Dissolution Test 2.

Inactive Ingredients: Each hard gelatin capsule contains Gelucire 44/14 (lauroyl macrogol glyceride type 1500), polyethylene glycol 20,000, polyethylene glycol 8000, hydroxypropylcellulose, sodium starch glycolate, gelatin, titanium dioxide, shellac, propylene glycol, may also contain black iron oxide, FD&C Blue #1, FD&C Blue #2, FD&C Red #40, D&C Yellow #10.

CLINICAL PHARMACOLOGY

Mechanism of Action

The active moiety of LIPOFEN is fenofibric acid. The pharmacological effects of fenofibric acid in both animals and humans have been extensively studied through oral administration of fenofibrate.

The lipid-modifying effects of fenofibric acid seen in clinical practice have been explained in vivo in transgenic mice and in vitro in human hepatocyte cultures by the activation of peroxisome proliferator activated receptor α (PPARα). Through this mechanism, fenofibrate increases lipolysis and elimination of triglyceride-rich particles from plasma by activating lipoprotein lipase and reducing production of apoprotein C-III (an inhibitor of lipoprotein lipase activity). The resulting decrease in triglycerides produces an alteration in the size and composition of LDL from small, dense particles (which are thought to be atherogenic due to their susceptibility to oxidation), to large buoyant particles. These larger particles have a greater affinity for cholesterol receptors and are catabolized rapidly. Activation of PPARα also induces an increase in the synthesis of apolipoproteins AI, AII and HDL cholesterol.

Fenofibrate also reduces serum uric acid levels in hyperuricemic and normal individuals by increasing the urinary excretion of uric acid.

Pharmacodynamics

Elevated levels of total-c, LDL-C, and apo B and decreased levels of HDL-C and its transport complex, Apo AI and Apo AII, are risk factors for atherosclerosis. Epidemiologic investigations have established that cardiovascular morbidity and mortality vary directly with the level of total-c, LDL-C, and triglycerides, and inversely with the level of HDL-C. The independent effect of raising HDL-C or lowering triglycerides (TG) on the risk of cardiovascular morbidity and mortality has not been determined.

Fenofibric acid, the active metabolite of fenofibrate, produces reductions in total cholesterol, LDL cholesterol, apolipoprotein B, total triglycerides and triglyceride rich lipoprotein (VLDL) in treated patients. In addition, treatment with fenofibrate results in increases in high density lipoprotein (HDL) and apolipoproteins AI and AII.

Pharmacokinetics

The extent and rate of absorption of fenofibric acid after administration of 150 mg LIPOFEN capsules are equivalent under low-fat and high-fat fed conditions to 160 mg TriCor® tablets.

Fenofibrate is a pro-drug of the active chemical moiety fenofibric acid. Fenofibrate is converted by ester hydrolysis in the body to fenofibric acid which is the active constituent measurable in the circulation. In a bioavailability study with LIPOFEN capsules 200 mg, following single-dose administration, the plasma concentration (AUC) for the parent compound fenofibrate was approximately 40 μg/mL compared to 204 μg/mL for the metabolite, fenofibric acid. In the same study, the half-life was observed to be 0.91 hrs for the parent compound versus 16.76 hrs for the metabolite.

Absorption: The absolute bioavailability of fenofibrate cannot be determined as the compound is virtually insoluble in aqueous media suitable for injection. However, fenofibrate is well absorbed from the gastrointestinal tract. Following oral administration in healthy volunteers, approximately 60% of a single dose of radiolabeled fenofibrate appeared in urine, primarily as fenofibric acid and its glucuronate conjugate, and 25% was excreted in the feces. Peak plasma levels of fenofibric acid occur within approximately 5 hours after oral administration.

The absorption of fenofibrate is increased when administered with food. With LIPOFEN, the extent of absorption is increased by approximately 58% and 25% under high-fat fed and low-fat fed conditions as compared to fasting conditions, respectively.

In a single dose and multiple dose bioavailability study with LIPOFEN capsules 200 mg, the extent of absorption (AUC) of fenofibric acid, the principal metabolite of fenofibrate, was 42% larger at steady state compared to single-dose administration. The rate of absorption (Cmax) of fenofibric acid was 73% greater after multiple-dose than after single-dose administration.

The extent of absorption of LIPOFEN in terms of AUC value of fenofibric acid increased in a less than proportional manner while the rate of absorption in terms of Cmax value of fenofibric acid increased proportionally related to dose.

Distribution: Upon multiple dosing of fenofibrate, fenofibric acid steady state is achieved after 5 days. Plasma concentrations of fenofibric acid at steady state are slightly more than double those following a single dose. Serum protein binding was approximately 99% in normal and hyperlipidemic subjects.

Metabolism: Following oral administration, fenofibrate is rapidly hydrolyzed by esterases to the active metabolite, fenofibric acid; unchanged fenofibrate is detected at low concentrations in plasma compared to fenofibric acid over most of the single dose and multiple dosing periods.

Fenofibric acid is primarily conjugated with glucuronic acid and then excreted in urine. A small amount of fenofibric acid is reduced at the carbonyl moiety to a benzhydrol metabolite which is, in turn, conjugated with glucuronic acid and excreted in urine.

In vitro and in vivo metabolism data indicate that neither fenofibrate nor fenofibric acid undergo oxidative metabolism (e.g., cytochrome P450) to a significant extent.

Elimination: After absorption, fenofibrate is mainly excreted in the urine in the form of metabolites, primarily fenofibric acid and fenofibric acid glucuronide. After administration of radiolabeled fenofibrate, approximately 60% of the dose appeared in the urine and 25% was excreted in feces.

Fenofibric acid is eliminated with a half-life of approximately 20 hours allowing once daily dosing.

Geriatrics: In elderly volunteers 77 to 87 years of age, the apparent oral clearance of fenofibric acid following a single oral dose of fenofibrate was 1.2 L/h, which compares to 1.1 L/h in young adults. This indicates that an equivalent dose of LIPOFEN can be used in elderly subjects with normal renal function, without increasing accumulation of the drug or metabolites [see Dosage and Administration and Use in Specific Populations].

Pediatrics: Pharmacokinetics of LIPOFEN has not been studied in pediatric patients.

Gender: No pharmacokinetic difference between males and females has been observed for fenofibrate.

Race: The influence of race on the pharmacokinetics of fenofibrate has not been studied, however fenofibrate is not metabolized by enzymes known for exhibiting inter-ethnic variability.

Renal Impairment: The pharmacokinetics of fenofibric acid was examined in patients with mild, moderate and severe renal impairment.  Patients with mild (estimated glomerular filtration rate eGFR 60-89 ml/min/1.73m2) to moderate (eGFR 30-59 mL/min/1.73m2) renal impairment had similar exposure but an increase in the half-life for fenofibric acid was observed as compared to that of healthy subjects. Patients with severe renal impairment (eGFR <30 mL/min/1.73m2) showed a 2.7-fold increase in exposure for fenofibric acid and increased accumulation of fenofibric acid during chronic dosing compared to that of healthy subjects. In patients with mild to moderate renal impairment, treatment with LIPOFEN should be initiated at a dose of 50 mg per day, and increased only after evaluation of the effects on renal function and lipid levels at this dose. Based on these findings, the use of LIPOFEN should be avoided in patients who have severe renal impairment.

Hepatic Impairment: No pharmacokinetic studies have been conducted in patients having hepatic impairment.

Drug-Drug Interactions: In vitro studies using human liver microsomes indicate that fenofibrate and fenofibric acid are not inhibitors of cytochrome P450 (CYP) isoforms CYP3A4, CYP2D6, CYP2E1, or CYP1A2. They are weak inhibitors of CYP2C8, CYP2C19 and CYP2A6, and mild to moderate inhibitors of CYP2C9 at therapeutic concentrations.

Table 2 describes the effects of co-administered drugs on fenofibric acid systemic exposure. Table 3 describes the effects of fenofibrate on co-administered drugs.

Table 2. Effects of Co-Administered Drugs on Fenofibric Acid Systemic Exposure from Fenofibrate Administration

1 TriCor (fenofibrate) oral tablet
2 TriCor (fenofibrate) oral micronized capsule

Co-
Administered
Drug
Dosage Regimen
of
Co-Administered

Drug
Dosage Regimen of
Fenofibrate
Changes in
Fenofibric Acid
Exposure
AUC C max
Lipid-lowering agents
Atorvastatin 20 mg once daily
for 10 days
Fenofibrate 160 mg1
once daily for 10
days
↓2% ↓4%
Pravastatin 40 mg as a single
dose
Fenofibrate 3 x 67
mg2 as a single dose
↓1% ↓2%
Fluvastatin 40 mg as a single
dose
Fenofibrate 160 mg1
as a single dose
↓2% ↓10%
Anti-diabetic agents
Glimepiride 1 mg as a single
dose
Fenofibrate 145 mg1
once daily for 10
days
↑1% ↓1%
Metformin 850 mg three times
daily for 10 days
Fenofibrate 54 mg1
three times daily for
10 days
↓9% ↓6%
Rosiglitazone 8 mg once daily for
5 days
Fenofibrate 145 mg1
once daily for 14
days
↑10% ↑3%
Table 3. Effects of Fenofibrate on Systemic Exposure of Co-Administered Drugs
Dosage Regimen of
Fenofibrate
Dosage Regimen of
Co-Administered
Drug
Change in Co-Administered
Drug Exposure
Analyte AUC C max

1 TriCor (fenofibrate) oral tablet
2 TriCor (fenofibrate) oral micronized capsule

Lipid-lowering agents
Fenofibrate 160 mg1
once daily for 10
days
Atorvastatin, 20 mg
once daily for 10 days
Atorvastatin ↓17% 0%
Fenofibrate 3 x 67
mg2 as a single dose
Pravastatin, 40 mg as a
single dose
Pravastatin ↑13% ↑13%
3α-Hydroxyl-iso-
pravastatin
↑26% ↑29%
Fenofibrate 160 mg1
as a single dose
Fluvastatin, 40 mg as a
single dose
(+)-3R, 5S-
Fluvastatin
↑15% ↑16%
Anti-diabetic agents
Fenofibrate 145 mg1
once daily for 10
days
Glimepiride, 1 mg as a
single dose
Glimepiride ↑35% ↑18%
Fenofibrate 54 mg1
three times daily for
10 days
Metformin, 850 mg
three times daily for 10
days
Metformin ↑3% ↑6%
Fenofibrate 145 mg1
once daily for 14
days
Rosiglitazone, 8 mg
once daily for 5 days
Rosiglitazone ↑6% ↓1%

NON-CLINICAL TOXICOLOGY

Carcinogenesis, Mutagenesis, Impairment of Fertility

Carcinogenesis: Two dietary carcinogenicity studies have been conducted in rats with fenofibrate. In the first 24-month study, Wistar rats were dosed with fenofibrate at 10, 45 and 200 mg/kg/day, approximately 0.3, 1, and 6 times the maximum recommended human dose (MRHD), based on body surface are comparisons (mg/m2). At a dose of 200 mg/kg/day (at 6 times MRHD), the incidence of liver carcinoma was significantly increased in both sexes. A statistically significant increase in pancreatic carcinomas was observed in males at 1 and 6 times the MRHD; an increase in pancreatic adenomas and benign testicular interstitial cell tumors was observed in males at 6 times the MRHD. In a second 24-month study in a different strain of rats (Sprague-Dawley), doses of 10 and 60 mg/kg/day (0.3 and 2 times the MRHD) produced significant increases in the incidence of pancreatic acinar adenomas in both sexes and increases in testicular interstitial cell tumors in males at 2 times the MRHD.

A 117-week carcinogenicity study was conducted in rats comparing three drugs: fenofibrate 10 and 60 mg/kg/day (0.3 and 2 times the MRHD), clofibrate (400 mg/kg; 2 times the human dose), and gemfibrozil (250 mg/kg; 2 times the human dose, based on mg/m2 surface area). Fenofibrate increased pancreatic acinar adenomas in both sexes. Clofibrate increased hepatocellular carcinomas in males and hepatic neoplastic nodules in females. Gemfibrozil increased hepatic neoplastic nodules in males and females, while all three drugs increased testicular interstitial cell tumors in males.

In a 21-month study in CF-1 mice, fenofibrate 10, 45 and 200 mg/kg/day (approximately 0.2, 1, and 3 times the MRHD on the basis of mg/m2 surface area) significantly increased the liver carcinomas in both sexes at 3 times the MRHD. In a second 18 month study at 10, 60 and 200 mg/kg/day, fenofibrate significantly increased the liver carcinomas in male mice and liver adenomas in female mice at 3 times the MRHD.

Electron microscopy studies have demonstrated peroxisomal proliferation following fenofibrate administration to the rat. An adequate study to test for peroxisome proliferation in humans has not been done, but changes in peroxisome morphology and numbers have been observed in humans after treatment with other members of the fibrate class when liver biopsies were compared before and after treatment in the same individual.

Mutagenesis: Fenofibrate has been demonstrated to be devoid of mutagenic potential in the following tests: Ames, mouse lymphoma, chromosomal aberration and unscheduled DNA synthesis in primary rat hepatocytes.

Impairment of Fertility: In fertility studies rats were given oral dietary doses of fenofibrate, males received 61 days prior to mating and females 15 days prior to mating through weaning which resulted in no adverse effect on fertility at doses up to 300 mg/kg/day (approximately 10 times the MRHD, based on mg/m2 surface area comparisons).

CLINICAL STUDIES

Clinical trials have not been conducted with LIPOFEN.

Primary Hypercholesterolemia (Heterozygous Familial and Nonfamilial) and Mixed Dyslipidemia

The effects of fenofibrate at a dose equivalent to 150 mg per day of LIPOFEN were assessed from four randomized, placebo-controlled, double-blind, parallel-group studies including patients with the following mean baseline lipid values: total-c 306.9 mg/dL; LDL-C 213.8 mg/dL; HDL-C 52.3 mg/dL; and triglycerides 191.0 mg/dL. Fenofibrate therapy lowered LDL-C, total-c, and the LDL-C/HDL-C ratio. Fenofibrate therapy also lowered triglycerides and raised HDL-C (see Table 4).

Table 4. Mean Percent Change in Lipid Parameters at End of Treatment+

+ Duration of study treatment was 3 to 6 months.
* p = <0.05 vs. Placebo

Treatment Group Total-C LDL-C HDL-C TG
Pooled Cohort
Mean baseline lipid values (n=646) 306.9 mg/dL 213.8 mg/dL 52.3 mg/dL 191.0 mg/dL
All FEN (n=361) -18.7%* -20.6%* +11.0%* * -28.9%*
Placebo (n=285) -0.4% -2.2% +0.7% +7.7%
Baseline LDL-C >160 mg/dL
and TG <150 mg/dL
Mean baseline lipid values (n=334) 307.7 mg/dL 227.7 mg/dL 58.1 mg/dL 101.7 mg/dL
All FEN (n=193) -22.4%* -31.4%* +9.8% -23.5%*
Placebo (n=141) +0.2% -2.2% +2.6% +11.7%
Baseline LDL-C >160 mg/dL
and TG ≥150 mg/dL
Mean baseline lipid values (n=242) 312.8 mg/dL 219.8 mg/dL 46.7 mg/dL 231.9 mg/dL
All FEN (n=126) -16.8%* -20.1%* +14.6%* -35.9%*
Placebo (n=116) -3.0% -6.6% +2.3% +0.9%

In a subset of the subjects, measurements of apo B were conducted. Fenofibrate treatment significantly reduced apo B from baseline to endpoint as compared with placebo (-25.1% vs. 2.4%, p<0.0001, n=213 and 143 respectively).

Severe Hypertriglyceridemia

The effects of fenofibrate on serum triglycerides were studied in two randomized, double-blind, placebo-controlled clinical trials of 147 hypertriglyceridemic patients. Patients were treated for eight weeks under protocols that differed only in that one entered patients with baseline TG levels of 500 to 1500 mg/dL, and the other TG levels of 350 to 500 mg/dL. In patients with hypertriglyceridemia and normal cholesterolemia with or without hyperchylomicronemia, treatment with fenofibrate at dosages equivalent to 150 mg LIPOFEN per day decreased primarily very low density lipoprotein (VLDL), triglycerides and VLDL cholesterol. Treatment of some with elevated triglycerides often results in an increase of LDL-C (see Table 5).

Table 5. Effects in Patients With Severe Hypertriglyceridemia

* = P<0.05 vs. Placebo

Study 1 Placebo Fenofibrate

Baseline TG
Levels 350 to
499 mg/dL

N

Baseline
(Mean)

Endpoint
(Mean)

% Change
(Mean)

N

Baseline
(Mean)

Endpoint
(Mean)

% Change
(Mean)
Triglycerides 28 449 450 -0.5 27 432 223 -46.2*
VLDL
Triglycerides
19 367 350 2.7 19 350 178 -44.1*
Total Cholesterol 28 255 261 2.8 27 252 227 -9.1*
HDL Cholesterol 28 35 36 4 27 34 40 19.6*
LDL Cholesterol 28 120 129 12 27 128 137 14.5
VLDL
Cholesterol
27 99 99 5.8 27 92 46 -44.7*

Study 2 Placebo Fenofibrate

Baseline TG
Levels 500 to
1500 mg/dL

N

Baseline
(Mean)

Endpoint
(Mean)

% Change
(Mean)

N

Baseline
(Mean)

Endpoint
(Mean)

% Change
(Mean)
Triglycerides 44 710 750 7.2 48 726 308 -54.5*
VLDL
Triglycerides
29 537 571 18.7 33 543 205 -50.6*
Total Cholesterol 44 272 271 0.4 48 261 223 -13.8*
HDL Cholesterol 44 27 28 5.0 48 30 36 22.9*
LDL Cholesterol 42 100 90 -4.2 45 103 131 45.0*
VLDL
Cholesterol
42 137 142 11.0 45 126 54 -49.4*

The effect of LIPOFEN on cardiovascular morbidity and mortality has not been determined.

-- advertisement -- The American Red Cross
 
Home | About Us | Contact Us | Site usage policy | Privacy policy

All Rights reserved - Copyright DrugLib.com, 2006-2017