DrugLib.com — Drug Information Portal

Rx drug information, pharmaceutical research, clinical trials, news, and more

Fenoglide (Fenofibrate) - Description and Clinical Pharmacology

 
 



DESCRIPTION

Fenoglide (fenofibrate) Tablets, is a lipid regulating agent available as tablets for oral administration. Each tablet contains 40 mg or 120 mg fenofibrate. The chemical name for fenofibrate is 2-[4-(4-chlorobenzoyl) phenoxy]-2-methyl-propanoic acid, 1-methylethyl ester with the following structural formula:

The empirical formula is C20H21O4Cl and the molecular weight is 360.83; fenofibrate is insoluble in water. The melting point is 79° to 82°C. Fenofibrate is a white solid which is stable under ordinary conditions.

Inactive Ingredients: Each tablet contains lactose monohydrate, NF; Polyethylene Glycol 6000, NF; Poloxamer 188, NF; and magnesium stearate, NF.

CLINICAL PHARMACOLOGY

Mechanism of Action

The effects of fenofibric acid seen in clinical practice have been explained in vivo in transgenic mice and in vitro in human hepatocyte cultures by the activation of peroxisome proliferator activated receptor α (PPARα).

Through this mechanism, fenofibrate increases lipolysis and elimination of triglyceride-rich particles from plasma by activating lipoprotein lipase and reducing production of apoprotein C-III (an inhibitor of lipoprotein lipase activity). The resulting fall in triglycerides produces an alteration in the size and composition of LDL from small, dense particles (which are thought to be atherogenic due to their susceptibility to oxidation), to large buoyant particles. These larger particles have a greater affinity for cholesterol receptors and are catabolized rapidly. Activation of PPARα also induces an increase in the synthesis of apoproteins A-I, A-II and HDL-cholesterol.

Fenofibrate also reduces serum uric acid levels in hyperuricemic and normal individuals by increasing the urinary excretion of uric acid.

Pharmacodynamics

A variety of clinical studies have demonstrated that elevated levels of total cholesterol (total-C), low density lipoprotein cholesterol (LDL-C), and apolipoprotein B (apo B), an LDL membrane complex, are risk factors for human atherosclerosis. Similarly, decreased levels of high density lipoprotein cholesterol (HDL-C) and its transport complex, apolipoprotein A (apo AI and apo AII) are risk factors for the development of atherosclerosis. Epidemiologic investigations have established that cardiovascular morbidity and mortality vary directly with the level of total-C, LDL-C, and triglycerides, and inversely with the level of HDL-C. The independent effect of raising HDL-C or lowering triglycerides (TG) on the risk of cardiovascular morbidity and mortality has not been determined.

Fenofibric acid, the active metabolite of fenofibrate, produces reductions in total cholesterol, LDL cholesterol, apolipoprotein B, total triglycerides, and triglyceride-rich lipoprotein (VLDL) in treated patients. In addition, treatment with fenofibrate results in increases in high density lipoprotein (HDL) and apoproteins apo AI and apo AII.

Pharmacokinetics

Plasma concentrations of fenofibric acid after single-dose administration of Fenoglide (fenofibrate) Tablets, 120 mg are equivalent to those of Fenofibrate 130 mg capsules under high-fat conditions.

A high-fat meal did not affect the fenofibric acid AUC after Fenoglide administration but did increase the mean Cmax by 44% compared to fasting conditions.

  • Absorption: The absolute bioavailability of fenofibrate cannot be determined as the compound is virtually insoluble in aqueous media suitable for injection. However, Fenoglide is well absorbed from the gastrointestinal tract. Following oral administration in healthy volunteers, approximately 60% of a single dose of radiolabelled fenofibrate appeared in urine, primarily as fenofibric acid and its glucuronate conjugate, and 25% was excreted in the feces. Peak plasma levels of fenofibric acid from Fenoglide occur, on average, within 2 to 3 hours after administration.
    Doses of three Fenoglide (fenofibrate) Tablets, 40 mg are considered to be equivalent to single doses of Fenoglide (fenofibrate) Tablets, 120 mg.
  • Distribution: In healthy volunteers, steady-state plasma levels of fenofibric acid were shown to be achieved within a week of dosing and did not demonstrate accumulation across time following multiple dose administration. Serum protein binding was approximately 99% in normal and hyperlipidemic subjects.
  • Metabolism: Following oral administration, fenofibrate is rapidly hydrolyzed by esterases to the active metabolite, fenofibric acid; no unchanged fenofibrate is detected in plasma.
    Fenofibric acid is primarily conjugated with glucuronic acid and then excreted in urine. A small amount of fenofibric acid is reduced at the carbonyl moiety to a benzhydrol metabolite which is, in turn, conjugated with glucuronic acid and excreted in urine.
    In vivo metabolism data indicate that neither fenofibrate nor fenofibric acid undergo oxidative metabolism (e.g., cytochrome P450) to a significant extent.
  • Excretion: After absorption, fenofibrate is mainly excreted in the urine in the form of metabolites, primarily fenofibric acid and fenofibric acid glucuronide. After administration of radiolabelled fenofibrate, approximately 60% of the dose appeared in the urine and 25% was excreted in the feces.
    Fenofibric acid from Fenoglide is eliminated with a half-life of 23 hours, allowing once daily administration in a clinical setting.
  • Geriatrics: In elderly volunteers 77 to 87 years of age, the oral clearance of fenofibric acid following a single oral dose of fenofibrate was 1.2 L/h, which compares to 1.1 L/h in young adults. This indicates that a similar dosage regimen can be used in the elderly, without increasing accumulation of the drug or metabolites. [See Dosage and Administration and Use in Specific Populations.]
  • Pediatrics: Fenoglide has not been investigated in adequate and well-controlled trials in pediatric patients.
  • Gender: No pharmacokinetic difference between males and females has been observed for fenofibrate.
  • Race: The influence of race on the pharmacokinetics of fenofibrate has not been studied; however, fenofibrate is not metabolized by enzymes known for exhibiting inter-ethnic variability. Therefore, inter-ethnic pharmacokinetic differences are very unlikely.
  • Renal Insufficiency: The pharmacokinetics of fenofibric acid was examined in patients with mild, moderate, and severe renal impairment. Patients with severe renal impairment (creatinine clearance [CrCl] ≤ 30 mL/min or estimated glomerular filtration rate [eGFR] < 30 mL/min/1.73m2) showed 2.7-fold increase in exposure for fenofibric acid and increased accumulation of fenofibric acid during chronic dosing compared to that of healthy subjects. Patients with mild to moderate renal impairment (CrCl 30-80 mL/min or eGFR 30-59 mL/min/1.73m2) had similar exposure but an increase in the half-life for fenofibric acid compared to that of healthy subjects. Based on these findings, the use of Fenoglide should be avoided in patients who have severe renal impairment and dose reduction is required in patients having mild to moderate renal impairment. [See Dosage and Administration.]
  • Hepatic Insufficiency: No pharmacokinetic studies have been conducted in patients having hepatic insufficiency.
  • Drug-Drug Interactions: In vitro studies using human liver microsomes indicate that fenofibrate and fenofibric acid are not inhibitors of cytochrome (CYP) P450 isoforms CYP3A4, CYP2D6, CYP2E1, or CYP1A2. They are weak inhibitors of CYP2C19 and CYP2A6, and mild-to-moderate inhibitors of CYP2C9 at therapeutic concentrations.
    Potentiation of coumarin-type anticoagulants has been observed with prolongation of the prothrombin time/INR. [See Concomitant Coumarin Anticoagulants.]
    Bile-acid resins have been shown to bind other drugs given concurrently. Therefore, fenofibrate should be taken at least 1 hour before or 4 to 6 hours after a bile acid binding resin to avoid impeding its absorption. [See Drug Interactions.]

NONCLINICAL TOXICOLOGY

Carcinogenesis, Mutagenesis, Impairment of Fertility

In a 24-month study in rats (10, 45, and 200 mg/kg; 0.3, 1, and 6 times the maximum recommended human dose on the basis of mg/meter2 of surface area), the incidence of liver carcinoma was significantly increased at 6 times the maximum recommended human dose in males and females. A statistically significant increase in pancreatic carcinomas occurred in males at 1 and 6 times the maximum recommended human dose; there were also increases in pancreatic adenomas and benign testicular interstitial cell tumors at 6 times the maximum recommended human dose in males. In a second 24-month study in a different strain of rats (doses of 10 and 60 mg/kg; 0.3 and 2 times the maximum recommended human dose based on mg/meter2 surface area), there were significant increases in the incidence of pancreatic acinar adenomas in both sexes and increases in interstitial cell tumors of the testes at 2 times the maximum recommended human dose.

A comparative carcinogenicity study was done in rats comparing three drugs: fenofibrate (10 and 70 mg/kg; 0.3 and 1.6 times the maximum recommended human dose), clofibrate (400 mg/kg; 1.6 times the human dose), and gemfibrozil (250 mg/kg; 1.7 times the human dose) (multiples based on mg/meter2 surface area). Pancreatic acinar adenomas were increased in males and females on fenofibrate; hepatocellular carcinoma and pancreatic acinar adenomas were increased in males and hepatic neoplastic nodules in females treated with clofibrate; hepatic neoplastic nodules were increased in males and females treated with gemfibrozil while testicular interstitial cell tumors were increased in males on all three drugs.

In a 21-month study in mice at doses of 10, 45, and 200 mg/kg (approximately 0.2, 0.7 and 3 times the maximum recommended human dose on the basis of mg/meter2 surface area), there were statistically significant increases in liver carcinoma at 3 times the maximum recommended human dose in both males and females. In a second 18-month study at the same doses, there was a significant increase in liver carcinoma in male mice and liver adenoma in female mice at 3 times the maximum recommended human dose.

Electron microscopy studies have demonstrated peroxisomal proliferation following fenofibrate administration to the rat. An adequate study to test for peroxisome proliferation in humans has not been done, but changes in peroxisome morphology and numbers have been observed in humans after treatment with other members of the fibrate class when liver biopsies were compared before and after treatment in the same individual.

Fenofibrate has been demonstrated to be devoid of mutagenic potential in the following tests: Ames, mouse lymphoma, chromosomal aberration, and unscheduled DNA synthesis.

Administration of 9 times the maximum recommended human dose of fenofibrate to female rats before and throughout gestation caused 100% of dams to delay delivery and resulted in a 60% increase in post-implantation loss, a decrease in litter size, a decrease in birth weight, a 40% survival of pups at birth, a 4% survival of pups as neonates, and a 0% survival of pups to weaning, and an increase in spina bifida.

Administration of 10 times the maximum recommended human dose to female rats on days 6-15 of gestation caused an increase in gross, visceral and skeletal findings in fetuses (domed head/hunched shoulders/rounded body/abnormal chest, kyphosis, stunted fetuses, elongated sternal ribs, malformed sternebrae, extra foramen in palatine, misshapen vertebrae, supernumerary ribs).

Administration of 7 times the maximum recommended human dose to female rats from day 15 of gestation through weaning caused a delay in delivery, a 40% decrease in live births, a 75% decrease in neonatal survival, and decreases in pup weight, at birth as well as on days 4 and 21 post-partum.

Administration of 9 and 18 times the maximum recommended human dose to female rabbits caused abortions in 10% of dams at 9 times and 25% of dams at 18 times the maximum recommended human dose and death of 7% of fetuses at 18 times the maximum recommended human dose.

CLINICAL STUDIES

Hyperlipidemia (Heterozygous Familial and Nonfamilial) and Mixed Dyslipidemia

The effects of fenofibrate at a dose equivalent to 120 mg Fenoglide per day were assessed from four randomized, placebo-controlled, double-blind, parallel-group studies including patients with the following mean baseline lipid values: total-C 306.9 mg/dL; LDL-C 213.8 mg/dL; HDL-C 52.3 mg/dL; and triglycerides 191.0 mg/dL. Fenofibrate therapy lowered LDL-C, Total-C, and the LDL-C/HDL-C ratio. Fenofibrate therapy also lowered triglycerides and raised HDL-C (see Table 2).

Table 2. Mean Percent Change in Lipid Parameters at End of TreatmentDuration of study treatment was 3 to 6 months.
  Treatment Group Total-C LDL-C HDL-C TG
Pooled Cohort
  Mean baseline lipid values (n=646) 306.9 mg/dL 213.8 mg/dL 52.3 mg/dL 191.0 mg/dL
  All FEN (n=361) -18.7% 1 -20.6% +11.0% -28.9%
  Placebo (n=285) -0.4% -2.2% +0.7% +7.7%
Baseline LDL-C >160 mg/dL and TG <150 mg/dL (Type IIa)
  Mean baseline lipid values (n=334) 307.7 mg/dL 227.7 mg/dL 58.1 mg/dL 101.7 mg/dL
  All FEN (n=193) -22.4% -31.4% +9.8% -23.5%
  Placebo (n=141) +0.2% -2.2% +2.6% +11.7%
Baseline LDL-C >160 mg/dL and TG ≥150 mg/dL (Type IIb)
  Mean baseline lipid values (n=242) 312.8 mg/dL 219.8 mg/dL 46.7 mg/dL 231.9 mg/dL
  All FEN (n=126) -16.8% -20.1% +14.6% -35.9%
  Placebo (n=116) -3.0% -6.6% +2.3% +0.9%

1 p=<0.05 vs. placebo

In a subset of the subjects, measurements of apo B were conducted. Fenofibrate treatment significantly reduced apo B from baseline to endpoint as compared with placebo (-25.1% vs. 2.4%, p<0.0001, n=213 and 143 respectively).

Hypertriglyceridemia

The effects of fenofibrate on serum triglycerides were studied in two randomized, double-blind, placebo-controlled clinical trials of 147 hypertriglyceridemic patients. Patients were treated for eight weeks under protocols that differed only in that one entered patients with baseline triglyceride (TG) levels of 500 to 1500 mg/dL, and the other TG levels of 350 to 500 mg/dL. In patients with hypertriglyceridemia and normal cholesterolemia with or without hyperchylomicronemia, treatment with fenofibrate at dosages equivalent to 120 mg Fenoglide (fenofibrate) Tablets per day decreased primarily very low density lipoprotein (VLDL) triglycerides and VLDL cholesterol. Treatment of patients with elevated triglycerides often results in an increase of low density lipoprotein (LDL) cholesterol (see Table 3).

Table 3. Effects of Fenofibrate in Patients With Hypertriglyceridemia
Study 1 Placebo Fenofibrate
Baseline TG levels 350 to 499 mg/dL N Baseline
(Mean)
Endpoint
(Mean)
% Change
(Mean)
N Baseline
(Mean)
Endpoint
(Mean)
% Change
(Mean)
Triglycerides 28 449 450 -0.5 27 432 223 -46.2 1
VLDL Triglycerides 19 367 350 2.7 19 350 178 -44.1
Total Cholesterol 28 255 261 2.8 27 252 227 -9.1
HDL Cholesterol 28 35 36 4 27 34 40 19.6
LDL Cholesterol 28 120 129 12 27 128 137 14.5
VLDL Cholesterol 27 99 99 5.8 27 92 46 -44.7
Study 2 Placebo Fenofibrate
Baseline TG levels 500 to 1500 mg/dL N Baseline
(Mean)
Endpoint
(Mean)
% Change
(Mean)
N Baseline
(Mean)
Endpoint
(Mean)
% Change
(Mean)
Triglycerides 44 710 750 7.2 48 726 308 -54.5
VLDL Triglycerides 29 537 571 18.7 33 543 205 -50.6
Total Cholesterol 44 272 271 0.4 48 261 223 -13.8
HDL Cholesterol 44 27 28 5.0 48 30 36 22.9
LDL Cholesterol 42 100 90 -4.2 45 103 131 45.0
VLDL Cholesterol 42 137 142 11.0 45 126 54 -49.4

1 =p<0.05 vs. placebo

-- advertisement -- The American Red Cross
 
Home | About Us | Contact Us | Site usage policy | Privacy policy

All Rights reserved - Copyright DrugLib.com, 2006-2017