DrugLib.com — Drug Information Portal

Rx drug information, pharmaceutical research, clinical trials, news, and more

Dopamine Injection (Dopamine Hydrochloride Injection) - Summary



Dopamine Hydrochloride and 5% Dextrose Injection, USP is a sterile, nonpyrogenic solution of Dopamine Hydrochloride, USP and Dextrose, USP in Water for Injection.

Dopamine hydrochloride is indicated for the correction of hemodynamic imbalances present in the shock syndrome due to myocardial infarctions, trauma, endotoxic septicemia, open heart surgery, renal failure and chronic cardiac decompensation as in congestive failure.

Where appropriate, restoration of blood volume with a suitable plasma expander or whole blood should be instituted or completed prior to administration of dopamine hydrochloride.

Patients most likely to respond adequately to dopamine hydrochloride are those in whom physiological parameters, such as urine flow, myocardial function and blood pressure have not undergone profound deterioration. Reports indicate that the shorter the time interval between onset of signs and symptoms and initiation of therapy with volume correction and dopamine hydrochloride, the better the prognosis.

Poor Perfusion of Vital Organs

Urine flow appears to be one of the better diagnostic signs by which adequacy of vital organ perfusion can be monitored. Nevertheless, the physician should also observe the patient for signs of reversal of confusion or comatose condition. Loss of pallor, increase in toe temperature and/or adequacy of nail bed capillary filling may also be used as indices of adequate dosage. Reported studies indicate that when dopamine hydrochloride is administered before urine flow has diminished to levels of approximately 0.3 mL/minute, prognosis is more favorable. Nevertheless, in a number of oliguric or anuric patients, administration of dopamine hydrochloride has resulted in an increase in urine flow which in some cases reached normal levels. Dopamine hydrochloride may also increase urine flow in patients whose output is within normal limits and thus may be of value in reducing the degree of preexisting fluid accumulation. It should be noted that at doses above those optimal for the individual patient, urine flow may decrease, necessitating reduction of dosage. Concurrent administration of dopamine hydrochloride and diuretic agents may produce an additive or potentiating effect.

Low Cardiac Output

Increased cardiac output is related to dopamine hydrochloride’s direct inotropic effect on the myocardium. Increased cardiac output at low or moderate doses appears to be related to a favorable prognosis. Increase in cardiac output has been associated with either static or decreased systemic vascular resistance (SVR). Static or decreased SVR associated with low or moderate increments in cardiac output is believed to be a reflection of differential effects on specific vascular beds with increased resistance in peripheral beds (e.g., femoral) and concomitant decreases in mesenteric and renal vascular beds. Redistribution of blood flow parallels these changes so that an increase in cardiac output is accompanied by an increase in mesenteric and renal blood flow. In many instances the renal fraction of the total cardiac output has been found to increase. Increase in cardiac output produced by dopamine hydrochloride is not associated with substantial decreases in systemic vascular resistance as may occur with isoproterenol.


Hypotension due to inadequate cardiac output can be managed by administration of low to moderate doses of dopamine hydrochloride, which have little effect on SVR. At high therapeutic doses, dopamine hydrochloride’s alpha-adrenergic activity becomes more prominent and thus may correct hypotension due to diminished SVR. As in the case of other circulatory decompensation states, prognosis is better in patients whose blood pressure and urine flow have not undergone profound deterioration. Therefore, it is suggested that the physician administer dopamine hydrochloride as soon as a definite trend toward decreased systolic and diastolic pressure becomes evident.

See all Dopamine Injection indications & dosage >>


Published Studies Related to Dopamine Injection

Effect of intravenous lidocaine associated with amitriptyline on pain relief and plasma serotonin, norepinephrine, and dopamine concentrations in fibromyalgia. [2011.05]
OBJECTIVE: The objective of this study was to evaluate the effect of intravenous lidocaine combined with amitriptyline on pain relief and plasma serotonin, norepinephrine, and dopamine levels... CONCLUSIONS: Combined administration of 240 mg intravenous lidocaine (once a week) and 25 mg amitriptyline for 4 weeks did not modify pain intensity or plasma serotonin, norepinephrine, or dopamine concentrations in fibromyalgia patients.

The role of nutrition in the regulation of luteinizing hormone secretion by the opioidergic, dopaminergic, and serotonergic systems in female Mediterranean goats. [2011.03]
This study examined which neural mechanism (opioid, dopaminergic, or serotonergic system) is involved in the regulation of luteinizing hormone (LH) secretion, with and without nutritional modulation, at different times of the photoperiodic cycle. Goats were randomly distributed into two experimental groups that received either 1.1 (high group; n = 18) or 0.7 (low group; n = 18) times the nutritional maintenance requirements...

Serotonin transporters in dopamine transporter imaging: a head-to-head comparison of dopamine transporter SPECT radioligands 123I-FP-CIT and 123I-PE2I. [2010.12]
Current SPECT radioligands available for in vivo imaging of the dopamine transporter (DAT) also show affinity for monoamine transporters other than DAT, especially the serotonin transporter (SERT). The effect of this lack of selectivity for in vivo imaging is unknown. In this study, we compared the SPECT radioligands (123)I-2-beta-carbomethoxy-3beta-(4-iodophenyl)-N-(3-fluoropropyl)nortropane ((123)I-FP-CIT) and (123)I-N-(3-iodoprop-2E-enyl)-2-beta-carbomethoxy-3beta-(4-methylphenyl) nortropane ((123)I-PE2I), which has a 10-fold higher selectivity than (123)I-FP-CIT for DAT versus SERT [corrected]... CONCLUSION: (123)I-FP-CIT and (123)I-PE2I had approximately the same target-to-background ratios, but per injected megabecquerel, (123)I-FP-CIT gave rise to 3-fold higher cerebral counting rates. We found that (123)I-FP-CIT, but not (123)I-PE2I, brain images have a highly interindividual but significant signal contribution from SERT. Whether the SERT signal contribution is of clinical importance needs to be established in future patient studies.

The non-ergot derived dopamine agonist quinagolide in prevention of early ovarian hyperstimulation syndrome in IVF patients: a randomized, double-blind, placebo-controlled trial. [2010.04]
BACKGROUND: Ovarian hyperstimulation syndrome (OHSS) seems to be induced by the ovarian release of vascular endothelial growth factor (VEGF), which increases vascular permeability. Dopamine agonists inhibit VEGF receptor phosphorylation and thereby decrease vascular permeability... CONCLUSIONS: Quinagolide appears to prevent moderate/severe early OHSS while not affecting treatment outcome. The effect is more marked in patients who did not achieve a clinical pregnancy. Quinagolide administered in high doses without dose-titration is associated with poor tolerability. ClinicalTrials.gov Identifier: NCT00329693.

Monthly administration of long-acting injectable risperidone and striatal dopamine D2 receptor occupancy for the management of schizophrenia. [2008.08]
CONCLUSION: As with plasma levels, there was considerable variability in D(2) occupancy levels for individuals receiving long-acting risperidone. This work suggests a possibility that sustained D(2) occupancy at or above the accepted threshold with acute clinical response may not be necessary to maintain response, a hypothesis with important clinical implications as we consider antipsychotic dosing and future antipsychotic development. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT00236353.

more studies >>

Clinical Trials Related to Dopamine Injection

Study of Dopamine Versus Vasopressin for Treatment of Low Blood Pressure in Low Birth Weight Infants [Completed]
Low blood pressure or hypotension is a very important problem that is often seen in premature babies, especially those with low birth weight. Severe hypotension leads to significant problems including brain bleeds, developmental delays, kidney and liver problems, and other issues that can affect babies for the rest of their lives. An important aspect in the management of infants with hypotension is the decision of when to treat and with what agent. Research is being conducted to try to find the best medication to use in these situations. Dopamine is often used first, but it does not always prove to be effective, and it has several concerning side effects. This study will look at vasopressin, which has fewer side effects, as a first-line medication for low blood pressure in extremely low birth weight infants. Hypotheses and Specific Aims: This study will show superiority of vasopressin to dopamine in preterm, extremely low birth weight infants who have hypotension within the first 24 hours of life. We will specifically look at its ability to raise blood pressure values, improve clinical symptoms seen, any adverse effects, and clinical outcomes of babies being treated.

Dopamine Versus Norepinephrine for the Treatment of Vasopressor Dependent Septic Shock [Completed]
We are performing a prospective, randomized, controlled trial of dopamine versus norepinephrine for septic shock. The trial will enroll patients with suspected or documented site of infection and having 2 out of the three SIRS criteria. Patients will also be receiving standard of care, early-goal directed therapy including but not limited to fluid resuscitation, appropriate and early antibiotics, source control and evaluation for drotrecogin alpha where deemed appropriate, while being supported for septic shock.

Diuretics and Dopamine in Heart Failure With Preserved Ejection Fraction [Recruiting]
Heart Failure with preserved Ejection Fraction (HFPEF) accounts for 40-50% of all heart failure patients with a frequency of hospital admissions for acute decompensation and short and long term mortality similar to patients with heart failure with reduced ejection fraction (HFREF). Patients with HFPEF are often preload dependent and despite admission to the hospital for acute decompensated heart failure (ADHF), are typically difficult to diurese due to the development of acute kidney injury. No studies have been performed evaluating treatment strategies for these patients. We hypothesize that changing the method of diuresis and/or the addition of low-dose dopamine for the treatment of ADHF in patients with HFPEF will reduce renal injury, resulting in a shorter length of stay, and decrease hospital readmissions over the ensuing year. This trial will randomize patients to either bolus or continuous infusion furosemide and then to either dopamine or no dopamine. The primary endpoint will be renal function at 72 hours as measured by change in GFR. Secondary endpoints for readmission, functional capacity, quality of life, and amount of diuresis will also be collected.

Dopamine in Acute Decompensated Heart Failure (DAD-HF) Trial [Recruiting]
The aim of this study is to compare the effects of high-dose furosemide versus low-dose furosemide combined with low-dose dopamine on diuresis, renal function, electrolyte balance, and 60-day post-discharge outcomes in patients hospitalized with acute decompensated heart failure.

Dopamine in Acute Decompensated Heart Failure II [Terminated]
The aim of this study is to compare the effects of 1) high-dose furosemide, 2) low-dose furosemide, and 3) low-dose furosemide combined with low-dose dopamine on diuresis, clinical status, renal function, electrolyte balance, length of stay, and 60-day post-discharge outcomes in patients hospitalized with acute decompensated heart failure.

more trials >>

Page last updated: 2011-12-09

-- advertisement -- The American Red Cross
Home | About Us | Contact Us | Site usage policy | Privacy policy

All Rights reserved - Copyright DrugLib.com, 2006-2017