DrugLib.com — Drug Information Portal

Rx drug information, pharmaceutical research, clinical trials, news, and more

Diprivan (Propofol) - Description and Clinical Pharmacology



Rx only

Strict aseptic technique must always be maintained during handling.  DIPRIVAN Injectable Emulsion is a single access parenteral product (single patient infusion vial) which contains 0.005% disodium edetate (EDTA) to inhibit the rate of growth of microorganisms, for up to 12 hours, in the event of accidental extrinsic contamination.  However, DIPRIVAN Injectable Emulsion can still support the growth of microorganisms, as it is not an antimicrobially preserved product under USP standards.  Do not use if contamination is suspected.  Discard unused drug product as directed within the required time limits .  There have been reports in which failure to use aseptic technique when handling DIPRIVAN Injectable Emulsion was associated with microbial contamination of the product and with fever, infection/sepsis, other life-threatening illness, and/or death.

There have been reports, in the literature and other public sources, of the transmission of bloodborne pathogens (such as Hepatitis B, Hepatitis C, and HIV) from unsafe injection practices, and use of propofol vials intended for single use on multiple persons.  DIPRIVAN Injectable Emulsion vials are never to be accessed more than once or used on more than one person.

(See WARNINGS and DOSAGE AND ADMINISTRATION ,   Handling Procedures ).


DIPRIVAN® (Propofol) Injectable Emulsion, USP is a sterile, nonpyrogenic emulsion containing 10 mg/mL of propofol suitable for intravenous administration.  Propofol is chemically described as 2,6‑diisopropylphenol.  The structural formula is:

C12H18O                                  M.W. 178.27

Propofol is slightly soluble in water and, thus, is formulated in a white, oil-in-water emulsion.  The pKa is 11.  The octanol/water partition coefficient for propofol is 6761:1 at a pH of 6 to 8.5.  In addition to the active component, propofol, the formulation also contains soybean oil (100 mg/mL), glycerol (22.5 mg/mL), egg lecithin (12 mg/mL); and disodium edetate (0.005%); with sodium hydroxide to adjust pH.  DIPRIVAN Injectable Emulsion, USP is isotonic and has a pH of 7 to 8.5.



DIPRIVAN Injectable Emulsion is an intravenous sedative-hypnotic agent for use in the induction and maintenance of anesthesia or sedation.  Intravenous injection of a therapeutic dose of propofol induces hypnosis, with minimal excitation, usually within 40 seconds from the start of injection (the time for one arm-brain circulation).  As with other rapidly acting intravenous anesthetic agents, the half-time of the blood-brain equilibration is approximately 1 to 3 minutes, accounting for the rate of induction of anesthesia.  The mechanism of action, like all general anesthetics, is poorly understood.  However, propofol is thought to produce its sedative/anesthetic effects by the positive modulation of the inhibitory function of the neurotransmitter GABA through the ligand-gated GABAA receptors.


Pharmacodynamic properties of propofol are dependent upon the therapeutic blood propofol concentrations.  Steady-state propofol blood concentrations are generally proportional to infusion rates.  Undesirable side effects, such as cardiorespiratory depression, are likely to occur at higher blood concentrations which result from bolus dosing or rapid increases in infusion rates.  An adequate interval (3 to 5 minutes) must be allowed between dose adjustments in order to assess clinical effects.

The hemodynamic effects of DIPRIVAN Injectable Emulsion during induction of anesthesia vary.  If spontaneous ventilation is maintained, the major cardiovascular effect is arterial hypotension (sometimes greater than a 30% decrease) with little or no change in heart rate and no appreciable decrease in cardiac output.  If ventilation is assisted or controlled (positive pressure ventilation), there is an increase in the incidence and the degree of depression of cardiac output.  Addition of an opioid, used as a premedicant, further decreases cardiac output and respiratory drive.

If anesthesia is continued by infusion of DIPRIVAN Injectable Emulsion, the stimulation of endotracheal intubation and surgery may return arterial pressure towards normal.  However, cardiac output may remain depressed.  Comparative clinical studies have shown that the hemodynamic effects of DIPRIVAN Injectable Emulsion during induction of anesthesia are generally more pronounced than with other intravenous (IV) induction agents. 

Induction of anesthesia with DIPRIVAN Injectable Emulsion is frequently associated with apnea in both adults and pediatric patients.  In adult patients who received DIPRIVAN Injectable Emulsion (2 to 2.5 mg/kg), apnea lasted less than 30 seconds in 7% of patients, 30 to 60 seconds in 24% of patients, and more than 60 seconds in 12% of patients.  In pediatric patients from birth through 16 years of age assessable for apnea who received bolus doses of DIPRIVAN Injectable Emulsion (1 to 3.6 mg/kg), apnea lasted less than 30 seconds in 12% of patients, 30 to 60 seconds in 10% of patients, and more than 60 seconds in 5% of patients.

During maintenance of general anesthesia, DIPRIVAN Injectable Emulsion causes a decrease in spontaneous minute ventilation usually associated with an increase in carbon dioxide tension which may be marked depending upon the rate of administration and concurrent use of other medications (e.g., opioids, sedatives, etc.).

During monitored anesthesia care (MAC) sedation, attention must be given to the cardiorespiratory effects of DIPRIVAN Injectable Emulsion.  Hypotension, oxyhemoglobin desaturation, apnea, and airway obstruction can occur, especially following a rapid bolus of DIPRIVAN Injectable Emulsion.  During initiation of MAC sedation, slow infusion or slow injection techniques are preferable over rapid bolus administration.  During maintenance of MAC sedation, a variable rate infusion is preferable over intermittent bolus administration in order to minimize undesirable cardiorespiratory effects.  In the elderly, debilitated, or ASA-PS III or IV patients, rapid (single or repeated) bolus dose administration should not be used for MAC sedation (see WARNINGS ).

Clinical and preclinical studies suggest that DIPRIVAN Injectable Emulsion is rarely associated with elevation of plasma histamine levels.

Preliminary findings in patients with normal intraocular pressure indicate that DIPRIVAN Injectable Emulsion produces a decrease in intraocular pressure which may be associated with a concomitant decrease in systemic vascular resistance.

Clinical studies indicate that DIPRIVAN Injectable Emulsion when used in combination with hypocarbia increases cerebrovascular resistance and decreases cerebral blood flow, cerebral metabolic oxygen consumption, and intracranial pressure.  DIPRIVAN Injectable Emulsion does not affect cerebrovascular reactivity to changes in arterial carbon dioxide tension (see Clinical Trials, Neuroanesthesia ).

Clinical studies indicate that DIPRIVAN Injectable Emulsion does not suppress the adrenal response to ACTH.

Animal studies and limited experience in susceptible patients have not indicated any propensity of DIPRIVAN Injectable Emulsion to induce malignant hyperthermia.

Hemosiderin deposits have been observed in the livers of dogs receiving DIPRIVAN Injectable Emulsion containing 0.005% disodium edetate over a four-week period; the clinical significance of this is unknown.


The pharmacokinetics of propofol are well described by a three compartment linear model with compartments representing the plasma, rapidly equilibrating tissues, and slowly equilibrating tissues.

Following an IV bolus dose, there is rapid equilibration between the plasma and the brain, accounting for the rapid onset of anesthesia.  Plasma levels initially decline rapidly as a result of both distribution and metabolic clearance.  Distribution accounts for about half of this decline following a bolus of propofol.  However, distribution is not constant over time, but decreases as body tissues equilibrate with plasma and become saturated.  The rate at which equilibration occurs is a function of the rate and duration of the infusion.  When equilibration occurs there is no longer a net transfer of propofol between tissues and plasma.

Discontinuation of the recommended doses of DIPRIVAN Injectable Emulsion after the maintenance of anesthesia for approximately one hour, or for sedation in the ICU for one day, results in a prompt decrease in blood propofol concentrations and rapid awakening.  Longer infusions (10 days of ICU sedation) result in accumulation of significant tissue stores of propofol, such that the reduction in circulating propofol is slowed and the time to awakening is increased.

By daily titration of DIPRIVAN Injectable Emulsion dosage to achieve only the minimum effective therapeutic concentration, rapid awakening within 10 to 15 minutes can occur even after long-term administration.  If, however, higher than necessary infusion levels have been maintained for a long time, propofol redistribution from fat and muscle to the plasma can be significant and slow recovery.

The figure below illustrates the fall of plasma propofol levels following infusions of various durations to provide ICU sedation.

The large contribution of distribution (about 50%) to the fall of propofol plasma levels following brief infusions means that after very long infusions a reduction in the infusion rate is appropriate by as much as half the initial infusion rate in order to maintain a constant plasma level.  Therefore, failure to reduce the infusion rate in patients receiving DIPRIVAN Injectable Emulsion for extended periods may result in excessively high blood concentrations of the drug.  Thus, titration to clinical response and daily evaluation of sedation levels are important during use of DIPRIVAN Injectable Emulsion infusion for ICU sedation.


Propofol clearance ranges from 23 to 50 mL/kg/min (1.6 to 3.4 L/min in 70 kg adults).  It is chiefly eliminated by hepatic conjugation to inactive metabolites which are excreted by the kidney.  A glucuronide conjugate accounts for about 50% of the administered dose.  Propofol has a steady-state volume of distribution (10-day infusion) approaching 60 L/kg in healthy adults.  A difference in pharmacokinetics due to gender has not been observed.  The terminal half-life of propofol after a 10-day infusion is 1 to 3 days.


With increasing patient age, the dose of propofol needed to achieve a defined anesthetic end point (dose-requirement) decreases.  This does not appear to be an age-related change in pharmacodynamics or brain sensitivity, as measured by EEG burst suppression.  With increasing patient age, pharmacokinetic changes are such that, for a given IV bolus dose, higher peak plasma concentrations occur, which can explain the decreased dose requirement.  These higher peak plasma concentrations in the elderly can predispose patients to cardiorespiratory effects including hypotension, apnea, airway obstruction, and/or arterial oxygen desaturation.  The higher plasma levels reflect an age-related decrease in volume of distribution and intercompartmental clearance.  Lower doses are therefore recommended for initiation and maintenance of sedation and anesthesia in elderly patients (see DOSAGE AND ADMINISTRATION ).


The pharmacokinetics of propofol were studied in children between 3 and 12 years of age who received DIPRIVAN Injectable Emulsion for periods of approximately 1 to 2 hours.  The observed distribution and clearance of propofol in these children were similar to adults.

Organ Failure

The pharmacokinetics of propofol do not appear to be different in people with chronic hepatic cirrhosis or chronic renal impairment compared to adults with normal hepatic and renal function.  The effects of acute hepatic or renal failure on the pharmacokinetics of propofol have not been studied.

Clinical Trials

Anesthesia and Monitored Anesthesia Care (MAC) Sedation

Pediatric Anesthesia

DIPRIVAN Injectable Emulsion was studied in clinical trials which included cardiac surgical patients.  Most patients were 3 years of age or older.  The majority of the patients were healthy ASA-PS I or II patients.  The range of doses in these studies are described in Tables 1 and 2.


Age Range

Induction Dose

Median (range)

Injection Duration

Median (range)

Birth through 16 years

2.5 mg/kg

(1 to 3.6)

20 sec.

(6 to 45)


Age Range

Maintenance Dosage




2 months to 2 years

199 (82 to 394)

65 (12 to 282)

2 to 12 years

188 (12 to 1041)

69 (23 to 374)

>12 through 16 years

161 (84 to 359)

69 (26 to 251)


DIPRIVAN Injectable Emulsion was studied in patients undergoing craniotomy for supratentorial tumors in two clinical trials.  The mean lesion size (anterior/posterior x lateral) was 31 mm x 32 mm in one trial and 55 mm x 42 mm in the other trial respectively.  Anesthesia was induced with a median DIPRIVAN dose of 1.4 mg/kg (range: 0.9 to 6.9 mg/kg) and maintained with a median maintenance DIPRIVAN dose of 146 mcg/kg/min (range: 68 to 425 mcg/kg/min).  The median duration of the DIPRIVAN Injectable Emulsion maintenance infusion was 285 minutes (range: 48 to 622 minutes).

DIPRIVAN Injectable Emulsion was administered by infusion in a controlled clinical trial to evaluate its effect on cerebrospinal fluid pressure (CSFP).  The mean arterial pressure was maintained relatively constant over 25 minutes with a change from baseline of -4% ± 17% (mean ± SD).  The change in CSFP was -46% ± 14%.  As CSFP is an indirect measure of intracranial pressure (ICP), DIPRIVAN Injectable Emulsion, when given by infusion or slow bolus in combination with hypocarbia, is capable of decreasing ICP independent of changes in arterial pressure.

Intensive Care Unit (ICU) Sedation

Adult Patients

DIPRIVAN Injectable Emulsion was compared to benzodiazepines and opioids in clinical trials involving ICU patients.  Of these, 302 received DIPRIVAN Injectable Emulsion and comprise the overall safety database for ICU sedation. 

Across all clinical studies, the mean infusion maintenance rate for all DIPRIVAN Injectable Emulsion patients was 27 ± 21 mcg/kg/min.  The maintenance infusion rates required to maintain adequate sedation ranged from 2.8 mcg/kg/min to 130 mcg/kg/min.  The infusion rate was lower in patients over 55 years of age (approximately 20 mcg/kg/min) compared to patients under 55 years of age (approximately 38 mcg/kg/min).  Although there are reports of reduced analgesic requirements, most patients received opioids for analgesia during maintenance of ICU sedation.  In these studies, morphine or fentanyl was used as needed for analgesia.  Some patients also received benzodiazepines and/or neuromuscular blocking agents.  During long-term maintenance of sedation, some ICU patients were awakened once or twice every 24 hours for assessment of neurologic or respiratory function. 

In Medical and Postsurgical ICU studies comparing DIPRIVAN Injectable Emulsion to benzodiazepine infusion or bolus, there were no apparent differences in maintenance of adequate sedation, mean arterial pressure, or laboratory findings.  Like the comparators, DIPRIVAN Injectable Emulsion reduced blood cortisol during sedation while maintaining responsivity to challenges with adrenocorticotropic hormone (ACTH).  Case reports from the published literature generally reflect that DIPRIVAN Injectable Emulsion has been used safely in patients with a history of porphyria or malignant hyperthermia.

In hemodynamically stable head trauma patients ranging in age from 19 to 43 years, adequate sedation was maintained with DIPRIVAN Injectable Emulsion or morphine.  There were no apparent differences in adequacy of sedation, intracranial pressure, cerebral perfusion pressure, or neurologic recovery between the treatment groups.  In literature reports of severely head‑injured patients in Neurosurgical ICUs, DIPRIVAN Injectable Emulsion infusion and hyperventilation, both with and without diuretics, controlled intracranial pressure while maintaining cerebral perfusion pressure.  In some patients, bolus doses resulted in decreased blood pressure and compromised cerebral perfusion pressure.

DIPRIVAN Injectable Emulsion was found to be effective in status epilepticus which was refractory to the standard anticonvulsant therapies.  For these patients, as well as for ARDS/respiratory failure and tetanus patients, sedation maintenance dosages were generally higher than those for other critically ill patient populations.

Pediatric Patients

A single, randomized, controlled, clinical trial that evaluated the safety and effectiveness of DIPRIVAN Injectable Emulsion versus standard sedative agents (SSA) was conducted on 327 pediatric ICU patients. Patients were randomized to receive either DIPRIVAN Injectable Emulsion2%, (113 patients), DIPRIVAN Injectable Emulsion1%, (109 patients), or an SSA (eg, lorazepam, chloral hydrate, fentanyl, ketamine, morphine, or phenobarbital).  DIPRIVAN Injectable Emulsion therapy was initiated at an infusion rate of 5.5 mg/kg/hr and titrated as needed to maintain sedation at a standardized level.  The results of the study showed an increase in the number of deaths in patients treated with DIPRIVAN Injectable Emulsion as compared to SSAs.  Of the 25 patients who died during the trial or within the 28-day follow-up period: 12 (11% were) in the DIPRIVAN Injectable Emulsion 2% treatment group, 9 (8% were) in the DIPRIVAN Injectable Emulsion 1% treatment group, and 4% were (4%) in the SSA treatment group.  The differences in mortality rate between the groups were not statistically significant.  Review of the deaths failed to reveal a correlation with underlying disease status or a correlation to the drug or a definitive pattern to the causes of death.

Cardiac Anesthesia

DIPRIVAN Injectable Emulsion was evaluated in clinical trials involving patients undergoing coronary artery bypass graft (CABG). 

In post-CABG (coronary artery bypass graft) patients, the maintenance rate of propofol administration was usually low (median 11 mcg/kg/min) due to the intraoperative administration of high opioid doses.  Patients receiving DIPRIVAN Injectable Emulsion required 35% less nitroprusside than midazolam patients.  During initiation of sedation in post-CABG patients, a 15% to 20% decrease in blood pressure was seen in the first 60 minutes.  It was not possible to determine cardiovascular effects in patients with severely compromised ventricular function.

-- advertisement -- The American Red Cross
Home | About Us | Contact Us | Site usage policy | Privacy policy

All Rights reserved - Copyright DrugLib.com, 2006-2017