DrugLib.com — Drug Information Portal

Rx drug information, pharmaceutical research, clinical trials, news, and more

Diabeta (Glyburide) - Description and Clinical Pharmacology

 
 



Diaβeta® (glyburide) Tablets USP
1.25, 2.5 and 5 mg

DESCRIPTION

Diaβeta® (glyburide) is an oral blood-glucose-lowering drug of the sulfonylurea class. It is a white, crystalline compound, formulated as tablets of 1.25 mg, 2.5 mg, and 5 mg strengths for oral administration. Diaβeta tablets USP contain the active ingredient glyburide and the following inactive ingredients: dibasic calcium phosphate USP, magnesium stearate NF, microcrystalline cellulose NF, sodium alginate NF, talc USP. Diaβeta 1.25 mg tablets USP also contain D&C Yellow #10 Aluminum Lake and FD&C Red #40 Aluminum Lake. Diaβeta 2.5 mg tablets USP also contain FD&C Red #40 Aluminum Lake. Diaβeta 5 mg tablets USP also contain D&C Yellow #10 Aluminum Lake, and FD&C Blue #1. Chemically, Diaβeta is identified as 1-[[p-[2-(5-Chloro-o-anisamido)ethyl]phenyl]sulfonyl]-3-cyclohexylurea.

The CAS Registry Number is 10238-21-8.

The structural formula is:

The molecular weight is 493.99. The aqueous solubility of Diaβeta increases with pH as a result of salt formation.

CLINICAL PHARMACOLOGY

Diaβeta appears to lower the blood glucose acutely by stimulating the release of insulin from the pancreas, an effect dependent upon functioning beta cells in the pancreatic islets. The mechanism by which Diaβeta lowers blood glucose during long-term administration has not been clearly established.

With chronic administration in Type II diabetic patients, the blood glucose lowering effect persists despite a gradual decline in the insulin secretory response to the drug. Extrapancreatic effects may play a part in the mechanism of action of oral sulfonylurea hypoglycemic drugs.

In addition to its blood glucose lowering actions, Diaβeta produces a mild diuresis by enhancement of renal free water clearance. Clinical experience to date indicates an extremely low incidence of disulfiram-like reactions in patients while taking Diaβeta.

Pharmacokinetics

Single-dose studies with Diaβeta in normal subjects demonstrate significant absorption within one hour, peak drug levels at about four hours, and low but detectable levels at twenty-four hours. Mean serum levels of glyburide, as reflected by areas under the serum concentration-time curve, increase in proportion to corresponding increases in dose. Multiple-dose studies with Diaβeta in diabetic patients demonstrate drug level concentration-time curves similar to single-dose studies, indicating no build-up of drug in tissue depots. The decrease of glyburide in the serum of normal healthy individuals is biphasic, the terminal half-life being about 10 hours. In single-dose studies in fasting normal subjects, the degree and duration of blood glucose lowering is proportional to the dose administered and to the area under the drug level concentration-time curve. The blood glucose lowering effect persists for 24 hours following single morning doses in non-fasting diabetic patients. Under conditions of repeated administration in diabetic patients, however, there is no reliable correlation between blood drug levels and fasting blood glucose levels. A one-year study of diabetic patients treated with Diaβeta showed no reliable correlation between administered dose and serum drug level.

The major metabolite of Diaβeta is the 4-trans-hydroxy derivative. A second metabolite, the 3-cis-hydroxy derivative, also occurs. These metabolites contribute no significant hypoglycemic action since they are only weakly active (1/400th and 1/40th, respectively, as glyburide) in rabbits.

Diaβeta is excreted as metabolites in the bile and urine, approximately 50% by each route. This dual excretory pathway is qualitatively different from that of other sulfonylureas, which are excreted primarily in the urine.

Sulfonylurea drugs are extensively bound to serum proteins. Displacement from protein binding sites by other drugs may lead to enhanced hypoglycemic action. In vitro, the protein binding exhibited by Diaβeta is predominantly non-ionic, whereas that of other sulfonylureas (chlorpropamide, tolbutamide, tolazamide) is predominantly ionic. Acidic drugs such as phenylbutazone, warfarin, and salicylates displace the ionic-binding sulfonylureas from serum proteins to a far greater extent than the non-ionic binding Diaβeta. It has not been shown that this difference in protein binding will result in fewer drug-drug interactions with Diaβeta in clinical use.

-- advertisement -- The American Red Cross
 
Home | About Us | Contact Us | Site usage policy | Privacy policy

All Rights reserved - Copyright DrugLib.com, 2006-2017