DrugLib.com — Drug Information Portal

Rx drug information, pharmaceutical research, clinical trials, news, and more

Atropine (Atropine Sulfate) - Summary

 
 



ATROPINE SUMMARY

Atropine Sulfate Injection, USP is a sterile, isotonic solution of Atropine Sulfate in Water for Injection q. s. Sodium Chloride added for isotonicity. pH adjusted with Sulfuric Acid. Preservative free. Atropine is a white crystalline alkaloid which may be extracted from belladonna root and hyoscyamine or may be produced synthetically. It is used in the form of atropine sulfate because this compound has much greater solubility in water.

1. In the treatment of parkinsonism. Rigidity and tremor relieved by the apparently selective depressant action.
2. In the gastrointestinal tract to relieve pylorospasm, hypertonicity of the small intestine and the hypermotility of the colon.
3. To relieve hypertonicity of the uterine muscle.
4. To relax the spasm of biliary and uretered colic and bronchial spasm.
5. To diminish the tone of the detrusor muscle of the urinary bladder in the treatment of urinary tract disorders.
6. To control the crying and laughing episodes in patients with brain lesions.
7. In cases of closed head injuries which cause acetylcholine to be released or to be present in cerebrospinal fluid which in turn causes abnormal EEG patterns, stupor and neurological signs.
8. In the management of peptic ulcer.
9. In anesthesia to control excessive salivation and bronchial secretions.
10. To control rhinorrhea of acute rhinitis or hay fever.
11. As an antidote for pilocarpine, physostigmine, isoflurophate, choline esters, certain species of Aminata and in cases of anticholinesterase insecticide poisoning.
12. In poisoning by the organic phosphate cholinesterase inhibitors found in certain insecticides and by chemical warfare “nerve gases”, large doses of atropine relieve the muscarine-like symptoms and some of the central-nervous-system manifestations. Adults suspected of contact with organic phosphorus insecticides of the parathion type should be given atropine sulfate, 0.8 mg, intramuscularly. If an atropine effect is not apparent within thirty minutes or if definite symptoms of the poisoning occur (nausea, vomiting, diarrhea, pupillary constriction, pulmonary edema, fasciculations of eyelids and tongue, jerky ocular movements, and excessive sweating, salivation, and bronchial secretion), atropine sulfate, 2 mg, should be given intramuscularly at hourly intervals until signs of atropinization are observed. Up to two or three times this dose (4 to 6 mg) may be required in severe cases. Removing contaminated clothing, washing the skin, and commencing artificial respiration and supportive therapy are also indicated.


See all Atropine indications & dosage >>

NEWS HIGHLIGHTS

Published Studies Related to Atropine

Risk factors for progressive myopia in the atropine therapy for myopia study. [2015]
DESIGN: Retrospective cohort study... CONCLUSIONS: Doctors and parents need to be aware that there is a small group of

Atropine for the treatment of childhood myopia: changes after stopping atropine 0.01%, 0.1% and 0.5%. [2014]
DESIGN: Prospective randomized double-masked clinical trial... CONCLUSION: There was a myopic rebound after atropine was stopped, and it was

Intrathecal atropine to prevent postoperative nausea and vomiting after Cesarean section: a randomized, controlled trial. [2011.08]
BACKGROUND: Postoperative nausea and vomiting (PONV) is a common adverse effect of intrathecal morphine, especially after Cesarean section. This randomized controlled trial investigated the effects of intrathecal administration of a small-dose of atropine on postoperative nausea and vomiting after Cesarean section... CONCLUSION: Intrathecal atropine had a significant antiemetic effect, making it a useful adjunct for intrathecal opioid-related PONV.

Comparative study between atropine and hyoscine-N-butylbromide for reversal of detomidine induced bradycardia in horses. [2011.05]
REASONS FOR PERFORMING STUDY: Bradycardia may be implicated as a cause of cardiovascular instability during anaesthesia. HYPOTHESIS: Hyoscine would induce positive chronotropism of shorter duration than atropine, without adversely impairing intestinal motility in detomidine sedated horses... CONCLUSION: Hyoscine is a shorter acting positive chronotropic agent than atropine, but does not potentiate the impairment in intestinal motility induced by detomidine. Because of severe hypertension, routine use of anticholinergics combined with detomidine is not recommended. POTENTIAL RELEVANCE: Hyoscine may represent an alternative to atropine for treating bradycardia. (c) 2010 EVJ Ltd.

Addition of atropine to submaximal exercise stress testing in patients evaluated for suspected ischaemia with SPECT imaging: a randomized, placebo-controlled trial. [2011.02]
PURPOSE: To evaluate the effects of the addition of atropine to exercise testing in patients who failed to achieve their target heart rate (HR) during stress myocardial perfusion imaging with single-photon emission computed tomography (SPECT)... CONCLUSION: The addition of atropine at the end of exercise testing is more effective than placebo in raising HR to adequate levels, without additional risks of complications. The use of atropine in patients who initially failed to achieve their maximal predicted HR is associated with a higher probability of achieving a diagnostic myocardial perfusion study.

more studies >>

Clinical Trials Related to Atropine

Augmenting Atropine Treatment for Amblyopia in Children 3 to < 8 Years Old [Completed]
This study is designed to evaluate the effectiveness of adding a plano lens to weekend atropine after visual acuity has stabilized with weekend atropine but amblyopia is still present. Children ages 3 to <8 years with visual acuity of 20/50 to 20/400 in the amblyopic eye will be enrolled in a run-in phase with weekend atropine until no improvement, followed by randomization of eligible patients to weekend atropine treatment with a plano lens over the sound eye versus without a plano lens over the sound eye. The primary objective is to determine if adding a plano lens to weekend atropine will improve visual acuity in patients with amblyopia still present after visual acuity has stabilized with initial treatment.

Heart Rate Response to Atropine Doses Less Than 0.1mg IV to Anesthetized Infants [Completed]
An infants heart rate is very important because it ensures that blood is pumped to all organs in the body. Heart rate may decrease during anesthesia and surgery, and this is why the anesthesiologist will often give a medication to prevent this from happening. The most common drug for this purpose is called atropine. The dose of most drugs given to babies is based upon the baby's weight, but some believe that the dose of atropine should not be less than 0. 1mg. However there is no evidence to support this minimum dose. A larger dose of atropine may cause a very fast heart rate instead. Anesthesiologists routinely dose the atropine based upon the baby's weight without regard for a minimum dose. The purpose of the present study is to measure the heart rate after doses of atropine in neonates and infants who receive less than 0. 1 mg.

0.6 vs. 1.2 mg Atropine Together With Neostigmine 2.5 mg on Heart Rate in Patient Receiving Muscle Relaxant [Completed]
Balanced general anesthesia with neuromuscular blocking agents has been widely used for surgery.. At the end of surgery, neostigmine has been given for the reversal of neuromuscular blocking agents with several adverse effects such as bradycardia and profuse secretion. Atropine has been used to prevent those side effects of neostigmine. The routine dosages of the two drugs are 2. 5 mg of neostigmine and 1. 2 mg of atropine. Tribuddharat S ey al. (1) has demonstrated that after giving 0. 9 mg atropine together with 2. 5 mg of neostigmine the mean heart rate during 1-8 minutes after the administration was increase 2-26 beats/min (bpm). At 9 and 10 minutes after administration of the drugs, the mean heart rate were decrease 0. 9 and 1. 6 bpm In the control group which receiving 1. 2 mg of atropine, the mean heart rate during 1-10 minutes after administration was increase 4-32 bpm. However this study did not report the incidence of bradycardia and blood pressure. The mean heart rate prior to atropine and neostigmine was 74. 43 + 11. 82 bpm.(1) Salem MG et al. (2) has demonstrated that after receiving 1. 2 mg of atropine and 5 mg of neostigmine the mean heart rate during 2-110 minutes was decrease 5-29 bpm with the lowest heart rate at 40 minutes after administration. This study also did not report the blood pressure. The baseline heart rate (HR) before administration of the reversal was associated with the following heart rate. Heinonen J et al. (3) has demonstrated that 80% of the patients after receiving 0. 015 mg/kg of atropine 3 minutes before 0. 03 mg of neostigmine for the reversal of pancuronium experienced bradycardia (heart rate < 50 bpm) compared with none in patients receiving alcuronium. However, before administration of atropine and neostigmine, the mean heart rate of patients was significantly lower in the pancuronium group. Either tachycardia or bradycardia with hypotension causes adverse affect to patient especially in specific group like patient with coronary artery disease or undergoing craniotomy. The primary objective of our study is to demonstrate the effect on heart rate (HR) and blood pressure of 0. 6 mg atropine and 2. 5 mg neostigmine for the reversal of muscle relaxant compare to 1. 2 mg atropine.

Trial Comparing Atropine to Atropine Plus a Plano Lens for the Sound Eye for Amblyopia in Children 3 to <7 Years Old [Completed]
The purpose of the study is:

- To compare the effectiveness and safety of weekend atropine augmented with a plano lens

for the sound eye versus weekend atropine alone for moderate amblyopia (20/40 to 20/100) in children 3 to less than 7 years old.

- To provide data on the response of severe amblyopia (20/125 to 20/400) to atropine

treatment with and without a plano lens.

Effectiveness of Atropine and Glycopyrrolate to Reduce Hyper Salivation With Ketamine Sedation [Completed]
The purpose of this study is to determine if the antisialagogues (anti-salivary agents), Atropine and Glycopyrrolate, are effective in reducing hypersalivation when sedating patients with Ketamine for procedural sedation in the emergency department or abscess clinic. The investigators will measure salivary flow rate by collecting oral secretions by oral suctioning over a 30 minute time period starting with the administration of Ketamine. The investigators hypothesize that patients who receive either atropine or glycopyrrolate will have fewer oral secretions than patients who receive placebo.

more trials >>

Reports of Suspected Atropine Side Effects

Blood Pressure Decreased (8)Respiratory Depression (7)Erythema (7)Respiratory Arrest (7)Bradycardia (7)Dysarthria (6)Acute Respiratory Distress Syndrome (5)Acute Respiratory Failure (5)Sinus Tachycardia (5)Ventricular Arrhythmia (4)more >>


Page last updated: 2015-08-10

-- advertisement -- The American Red Cross
 
Home | About Us | Contact Us | Site usage policy | Privacy policy

All Rights reserved - Copyright DrugLib.com, 2006-2017