DrugLib.com — Drug Information Portal

Rx drug information, pharmaceutical research, clinical trials, news, and more

Aranesp (Erythropoiesis Stimulating Protein) - Warnings and Precautions

 
 



WARNING: ESAs INCREASE THE RISK OF DEATH, MYOCARDIAL INFARCTION, STROKE, VENOUS THROMBOEMBOLISM, THROMBOSIS OF VASCULAR ACCESS AND TUMOR PROGRESSION OR RECURRENCE

 
Chronic Kidney Disease:

  • In controlled trials, patients experienced greater risks for death, serious adverse cardiovascular reactions, and stroke when administered erythropoiesis-stimulating agents (ESAs) to target a hemoglobin level of greater than 11 g/dL.
  • No trial has identified a hemoglobin target level, Aranesp dose, or dosing strategy that does not increase these risks.
  • Use the lowest Aranesp dose sufficient to reduce the need for red blood cell (RBC) transfusions [see Warnings and Precautions ].

Cancer:

  • ESAs shortened overall survival and/or increased the risk of tumor progression or recurrence in clinical studies of patients with breast, non-small cell lung, head and neck, lymphoid, and cervical cancers [see Table 3, Warnings and Precautions].
  • Because of these risks, prescribers and hospitals must enroll in and comply with the ESA APPRISE Oncology Program to prescribe and/or dispense Aranesp to patients with cancer. To enroll in the ESA APPRISE Oncology Program, visit www.esa-apprise.com or call 1-866-284-8089 for further assistance [see Warnings and Precautions ].
  • To decrease these risks, as well as the risk of serious cardiovascular and thromboembolic reactions, use the lowest dose needed to avoid RBC transfusions [see Dosage and Administration].
  • Use ESAs only for anemia from myelosuppressive chemotherapy [see Indications and Usage ].
  • ESAs are not indicated for patients receiving myelosuppressive chemotherapy when the anticipated outcome is cure [see Indications and Usage].
  • Discontinue following the completion of a chemotherapy course [see Dosage and Administration].
 

WARNINGS AND PRECAUTIONS

Increased Mortality, Myocardial Infarction, Stroke, and Thromboembolism

  • In controlled clinical trials of patients with CKD comparing higher hemoglobin targets (13 - 14 g/dL) to lower targets (9 - 11.3 g/dL), Aranesp and other ESAs increased the risk of death, myocardial infarction, stroke, congestive heart failure, thrombosis of hemodialysis vascular access, and other thromboembolic events in the higher target groups.
  • Using Aranesp to target a hemoglobin level of greater than 11 g/dL increases the risk of serious adverse cardiovascular reactions and has not been shown to provide additional benefit [see Clinical Studies ].  Use caution in patients with coexistent cardiovascular disease and stroke [see Dosage and Administration]. Patients with CKD and an insufficient hemoglobin response to ESA therapy may be at even greater risk for cardiovascular reactions and mortality than other patients. A rate of hemoglobin rise of greater than 1 g/dL over 2 weeks may contribute to these risks.
  • In controlled clinical trials of patients with cancer, Aranesp and other ESAs increased the risks for death and serious adverse cardiovascular reactions. These adverse reactions included myocardial infarction and stroke.
  • In controlled clinical trials, ESAs increased the risk of death in patients undergoing coronary artery bypass graft surgery (CABG) and the risk of deep venous thrombosis (DVT) in patients undergoing orthopedic procedures.


The design and overall results of the 3 large trials comparing higher and lower hemoglobin targets are shown in Table 2.

Table 2: Randomized Controlled Trials Showing Adverse Cardiovascular Outcomes in Patients With CKD
   Normal Hematocrit Study (NHS)
(N = 1265)
 
CHOIR
(N = 1432)
 
TREAT
(N = 4038)
 Time Period of Trial  1993 to 1996  2003 to 2006  2004 to 2009
 Population  CKD patients on hemodialysis with coexisting CHF or CAD, hematocrit 30 ± 3% on epoetin alfa  CKD patients not on dialysis with hemoglobin < 11 g/dL not previously administered epoetin alfa  CKD patients not on dialysis with type II diabetes, hemoglobin ≤ 11 g/dL
 Hemoglobin Target; Higher vs. Lower (g/dL)  14.0 vs. 10.0  13.5 vs. 11.3  13.0 vs. ≥ 9.0
 Median (Q1, Q3) Achieved Hemoglobin level (g/dL)  12.6 (11.6, 13.3) vs. 10.3 (10.0, 10.7)  13.0 (12.2, 13.4) vs. 11.4 (11.1, 11.6)  12.5 (12.0, 12.8) vs. 10.6 (9.9, 11.3)
 Primary Endpoint  All-cause mortality or non-fatal MI  All-cause mortality, MI, hospitalization for CHF, or stroke  All-cause mortality, MI, myocardial ischemia, heart failure, and stroke
 Hazard Ratio or Relative Risk (95% CI)  1.28 (1.06 - 1.56)  1.34 (1.03 - 1.74)  1.05 (0.94 - 1.17)
 Adverse Outcome for Higher Target Group  All-cause mortality  All-cause mortality  Stroke
 Hazard Ratio or Relative Risk (95% CI)  1.27 (1.04 - 1.54)  1.48 (0.97 - 2.27)  1.92 (1.38 - 2.68)

Patients with Chronic Kidney Disease

Normal Hematocrit Study (NHS): A prospective, randomized, open-label study of 1265 patients with chronic kidney disease on dialysis with documented evidence of congestive heart failure or ischemic heart disease was designed to test the hypothesis that a higher target hematocrit (Hct) would result in improved outcomes compared with a lower target Hct. In this study, patients were randomized to epoetin alfa treatment targeted to a maintenance hemoglobin of either 14 ± 1 g/dL or 10 ± 1 g/dL. The trial was terminated early with adverse safety findings of higher mortality in the high hematocrit target group. Higher mortality (35% vs. 29%) was observed for the patients randomized to a target hemoglobin of 14 g/dL than for the patients randomized to a target hemoglobin of 10 g/dL. For all-cause mortality, the HR = 1.27; 95% CI (1.04, 1.54); p=0.018. The incidence of nonfatal myocardial infarction, vascular access thrombosis, and other thrombotic events was also higher in the group randomized to a target hemoglobin of 14 g/dL.


CHOIR: A randomized, prospective trial, 1432 patients with anemia due to CKD who were not undergoing dialysis and who had not previously received epoetin alfa therapy were randomized to epoetin alfa treatment targeting a maintenance hemoglobin concentration of either 13.5 g/dL or 11.3 g/dL. The trial was terminated early with adverse safety findings. A major cardiovascular event (death, myocardial infarction, stroke, or hospitalization for congestive heart failure) occurred in 125 of the 715 patients (18%) in the higher hemoglobin group compared to 97 of the 717 patients (14%) in the lower hemoglobin group [hazard ratio (HR) 1.34, 95% CI: 1.03, 1.74; p = 0.03].


TREAT: A randomized, double-blind, placebo-controlled, prospective trial of 4038 patients with CKD not on dialysis (eGFR of 20 – 60 mL/min), anemia (hemoglobin levels ≤ 11 g/dL), and type 2 diabetes mellitus, patients were randomized to receive either Aranesp treatment or a matching placebo. Placebo group patients also received Aranesp when their hemoglobin levels were below 9 g/dL. The trial objectives were to demonstrate the benefit of Aranesp treatment of the anemia to a target hemoglobin level of 13 g/dL, when compared to a "placebo" group, by reducing the occurrence of either of two primary endpoints: a composite cardiovascular endpoint of all-cause mortality or a specified cardiovascular event (myocardial ischemia, CHF, MI, and CVA) or a composite renal endpoint of all-cause mortality or progression to end stage renal disease. The overall risks for each of the two primary endpoints (the cardiovascular composite and the renal composite) were not reduced with Aranesp treatment (see Table 2), but the risk of stroke was increased nearly two-fold in the Aranesp-treated group versus the placebo group: annualized stroke rate 2.1% vs. 1.1%, respectively, HR 1.92; 95% CI: 1.38, 2.68; p < 0.001. The relative risk of stroke was particularly high in patients with a prior stroke: annualized stroke rate 5.2% in the Aranesp treated group and 1.9% in the placebo group, HR 3.07; 95% CI: 1.44, 6.54. Also, among Aranesp-treated subjects with a past history of cancer, there were more deaths due to all causes and more deaths adjudicated as due to cancer, in comparison with the control group.


Patients with Cancer

An increased incidence of thromboembolic reactions, some serious and life-threatening, occurred in patients with cancer treated with ESAs.

In a randomized, placebo-controlled study (Study 1 in Table 3 [see Warnings and Precautions ]) of 939 women with metastatic breast cancer receiving chemotherapy, patients received either weekly epoetin alfa or placebo for up to a year. This study was designed to show that survival was superior when epoetin alfa was administered to prevent anemia (maintain hemoglobin levels between 12 and 14 g/dL or hematocrit between 36% and 42%). This study was terminated prematurely when interim results demonstrated a higher mortality at 4 months (8.7% vs. 3.4%) and a higher rate of fatal thrombotic reactions (1.1% vs. 0.2%) in the first 4 months of the study among patients treated with epoetin alfa. Based on Kaplan-Meier estimates, at the time of study termination, the 12-month survival was lower in the epoetin alfa group than in the placebo group (70% vs. 76%; HR 1.37, 95% CI: 1.07, 1.75; p = 0.012).

Patients Having Surgery

Aranesp is not approved for reduction of RBC transfusions in patients scheduled for surgical procedures.

An increased incidence of DVT in patients receiving epoetin alfa undergoing surgical orthopedic procedures was demonstrated. In a randomized, controlled study, 680 adult patients, not receiving prophylactic anticoagulation and undergoing spinal surgery, received epoetin alfa and standard of care (SOC) treatment (n = 340) or SOC treatment alone (n = 340). A higher incidence of DVTs, determined by either color flow duplex imaging or by clinical symptoms, was observed in the epoetin alfa group (16 [4.7%] patients) compared with the SOC group (7 [2.1%] patients). In addition to the 23 patients with DVTs included in the primary analysis, 19 [2.8%] patients experienced 1 other thrombovascular event (TVE) each (12 [3.5%] in the epoetin alfa group and 7 [2.1%] in the SOC group).

Increased mortality was observed in a randomized, placebo-controlled study of epoetin alfa in adult patients who were undergoing CABG surgery (7 deaths in 126 patients randomized to epoetin alfa versus no deaths among 56 patients receiving placebo). Four of these deaths occurred during the period of study drug administration and all 4 deaths were associated with thrombotic events.

Prescribing and Distribution Program for Aranesp in Patients With Cancer

In order to prescribe and/or dispense Aranesp to patients with cancer and anemia due to myelosuppressive chemotherapy, prescribers and hospitals must enroll in and comply with the ESA APPRISE Oncology Program requirements. To enroll, visit www.esa-apprise.com or call 1-866-284-8089 for further assistance. Additionally, prior to each new course of Aranesp in patients with cancer, prescribers and patients must provide written acknowledgment of a discussion of the risks of Aranesp.

Increased Mortality and/or Increased Risk of Tumor Progression or Recurrence in Patients With Cancer

ESAs resulted in decreased locoregional control/progression-free survival and/or overall survival (see Table 3). These findings were observed in studies of patients with advanced head and neck cancer receiving radiation therapy (Studies 5 and 6), in patients receiving chemotherapy for metastatic breast cancer (Study 1) or lymphoid malignancy (Study 2), and in patients with non-small cell lung cancer or various malignancies who were not receiving chemotherapy or radiotherapy (Studies 7 and 8).

Table 3. Randomized, Controlled Studies With Decreased Survival and/or Decreased Locoregional Control
 Study/Tumor/(n)  Hemoglobin Target  Hemoglobin(Median;
Q1, Q3 1)
 Primary Efficacy Outcome  Adverse Outcome for
ESA- containing Arm
 Chemotherapy
Study 1
Metastatic breast
cancer
(n = 939)
 12-14 g/dL  12.9 g/dL;12.2, 13.3 g/dL  12-month overall survival  Decreased 12-month survival
Study 2
Lymphoid malignancy
(n = 344)

13-15 g/dL (M)

13-14 g/dL (F)

 11 g/dL;9.8, 12.1 g/dL  Proportion of patients achieving a hemoglobin response  Decreased overall survival
Study 3
Early breast
cancer
(n = 733)
 12.5-13 g/dL

13.1 g/dL;

12.5, 13.7 g/dL

 Relapse-free and overall survival

Decreased 3-year relapse-free and overall survival

Study 4
Cervical cancer
(n = 114)
 12-14 g/dL  12.7 g/dL;
12.1, 13.3 g/dL
 Progression-free and overall survival and locoregional control  Decreased 3-year progression-free and overall survival and locoregional control
 Radiotherapy Alone
Study 5
Head and neck
cancer
(n = 351)

≥15 g/dL (M)

≥14 g/dL (F)

 Not available  Locoregional progression-free survival   Decreased 5-year locoregional progression-free and overall survival
Study 6
Head and neck
cancer
(n = 522)
 14-15.5 g/dL  Not available  Locoregional disease control  Decreased locoregional disease control
 No Chemotherapy or Radiotherapy
Study 7
Non-small cell
lung cancer
(n = 70)
 12-14 g/dL  Not available  Quality of life  Decreased overall survival
Study 8
Non-myeloid
malignancy
(n = 989)
 12-13 g/dL

10.6 g/dL;

9.4, 11.8 g/dL

 RBC transfusions  Decreased overall survival

1 Q1= 25th percentile
Q3= 75th percentile

Decreased Overall Survival

Study 1 was described in the previous section [see Warnings and Precautions]. Mortality at 4 months (8.7% vs. 3.4%) was significantly higher in the epoetin alfa arm. The most common investigator-attributed cause of death within the first 4 months was disease progression; 28 of 41 deaths in the epoetin alfa arm and 13 of 16 deaths in the placebo arm were attributed to disease progression. Investigator-assessed time to tumor progression was not different between the 2 groups. Survival at 12 months was significantly lower in the epoetin alfa arm (70% vs. 76%; HR 1.37, 95% CI: 1.07, 1.75; p = 0.012).

Study 2 was a randomized, double-blind study (darbepoetin alfa vs. placebo) conducted in 344 anemic patients with lymphoid malignancy receiving chemotherapy.  With a median follow-up of 29 months, overall mortality rates were significantly higher among patients randomized to darbepoetin alfa as compared to placebo (HR 1.36, 95% CI: 1.02, 1.82).

Study 7 was a multicenter, randomized, double-blind study (epoetin alfa vs. placebo) in which patients with advanced non-small cell lung cancer receiving only palliative radiotherapy or no active therapy were treated with epoetin alfa to achieve and maintain hemoglobin levels between 12 and 14 g/dL. Following an interim analysis of 70 patients (planned accrual 300 patients), a significant difference in survival in favor of the patients in the placebo arm of the study was observed (median survival 63 vs. 129 days; HR 1.84; p = 0.04).

Study 8 was a randomized, double-blind study (darbepoetin alfa vs. placebo) in 989 anemic patients with active malignant disease, neither receiving nor planning to receive chemotherapy or radiation therapy. There was no evidence of a statistically significant reduction in proportion of patients receiving RBC transfusions. The median survival was shorter in the darbepoetin alfa treatment group than in the placebo group (8 months vs. 10.8 months; HR 1.30, 95% CI: 1.07, 1.57).

Decreased Progression-free Survival and Overall Survival

Study 3 was a randomized, open-label, controlled, factorial design study in which darbepoetin alfa was administered to prevent anemia in 733 women receiving neo-adjuvant breast cancer treatment. A final analysis was performed after a median follow-up of approximately 3 years. The 3-year survival rate was lower (86% vs. 90%; HR 1.42, 95% CI: 0.93, 2.18) and the 3-year relapse-free survival rate was lower (72% vs. 78%; HR 1.33, 95% CI: 0.99, 1.79) in the darbepoetin alfa-treated arm compared to the control arm.

Study 4 was a randomized, open-label, controlled study that enrolled 114 of a planned 460 cervical cancer patients receiving chemotherapy and radiotherapy. Patients were randomized to receive epoetin alfa to maintain hemoglobin between 12 and 14 g/dL or to RBC transfusion support as needed. The study was terminated prematurely due to an increase in thromboembolic adverse reactions in epoetin alfa-treated patients compared to control (19% vs. 9%). Both local recurrence (21% vs. 20%) and distant recurrence (12% vs. 7%) were more frequent in epoetin alfa-treated patients compared to control. Progression-free survival at 3 years was lower in the epoetin alfa-treated group compared to control (59% vs. 62%; HR 1.06, 95% CI: 0.58, 1.91). Overall survival at 3 years was lower in the epoetin alfa-treated group compared to control (61% vs. 71%; HR 1.28, 95% CI: 0.68, 2.42).

Study 5 was a randomized, placebo-controlled study in 351 head and neck cancer patients where epoetin beta or placebo was administered to achieve target hemoglobins ≥ 14 and ≥ 15 g/dL for women and men, respectively. Locoregional progression-free survival was significantly shorter in patients receiving epoetin beta (HR 1.62, 95% CI: 1.22, 2.14; p = 0.0008) with medians of 406 days and 745 days in the epoetin beta and placebo arms respectively. Overall survival was significantly shorter in patients receiving epoetin beta (HR 1.39, 95% CI: 1.05, 1.84; p = 0.02).

Decreased Locoregional Control

Study 6 was a randomized, open-label, controlled study conducted in 522 patients with primary squamous cell carcinoma of the head and neck receiving radiation therapy alone (no chemotherapy) who were randomized to receive darbepoetin alfa to maintain hemoglobin levels of 14 to15.5 g/dL or no darbepoetin alfa. An interim analysis performed on 484 patients demonstrated that locoregional control at 5 years was significantly shorter in patients receiving darbepoetin alfa (RR 1.44, 95% CI: 1.06, 1.96; p = 0.02). Overall survival was shorter in patients receiving darbepoetin alfa (RR 1.28, 95% CI: 0.98, 1.68; p = 0.08).

Hypertension

Aranesp is contraindicated in patients with uncontrolled hypertension. In Aranesp clinical studies, approximately 40% of patients with CKD required initiation or intensification of antihypertensive therapy during the early phase of treatment. Hypertensive encephalopathy and seizures have been reported in patients with CKD receiving Aranesp.


Appropriately control hypertension prior to initiation of and during treatment with Aranesp. Reduce or withhold Aranesp if blood pressure becomes difficult to control. Advise patients of the importance of compliance with antihypertensive therapy and dietary restrictions [see Patient Counseling Information ].

Seizures

Aranesp increases the risk of seizures in patients with CKD. During the first several months following initiation of Aranesp, monitor patients closely for premonitory neurologic symptoms. Advise patients to contact their healthcare practitioner for new-onset seizures, premonitory symptoms, or change in seizure frequency.

Lack or Loss of Hemoglobin Response to Aranesp

For lack or loss of hemoglobin response to Aranesp, initiate a search for causative factors (e.g., iron deficiency, infection, inflammation, bleeding). If typical causes of lack or loss of hemoglobin response are excluded, evaluate for PRCA [see Warnings and Precautions]. In the absence of PRCA, follow dosing recommendations for management of patients with an insufficient hemoglobin response to Aranesp therapy [see Dosage and Administration ].

Pure Red Cell Aplasia

Cases of PRCA and of severe anemia, with or without other cytopenias that arise following the development of neutralizing antibodies to erythropoietin have been reported in patients treated with Aranesp. This has been reported predominantly in patients with CKD receiving ESAs by subcutaneous administration. PRCA has also been reported in patients receiving ESAs for anemia related to hepatitis C treatment (an indication for which Aranesp is not approved).

If severe anemia and low reticulocyte count develop during treatment with Aranesp, withhold Aranesp and evaluate patients for neutralizing antibodies to erythropoietin. Contact Amgen (1-800-77-AMGEN) to perform assays for binding and neutralizing antibodies. Permanently discontinue Aranesp in patients who develop PRCA following treatment with Aranesp or other erythropoietin protein drugs. Do not switch patients to other ESAs.

Serious Allergic Reactions

Serious allergic reactions, including anaphylactic reactions, angioedema, bronchospasm, skin rash, and urticaria may occur with Aranesp. Immediately and permanently discontinue Aranesp and administer appropriate therapy if a serious allergic or anaphylactic reaction occurs.

Dialysis Management

Patients may require adjustments in their dialysis prescriptions after initiation of Aranesp. Patients receiving Aranesp may require increased anticoagulation with heparin to prevent clotting of the extracorporeal circuit during hemodialysis.

Laboratory Monitoring

Evaluate transferrin saturation and serum ferritin prior to and during Aranesp treatment. Administer supplemental iron therapy when serum ferritin is less than 100 mcg/L or when serum transferrin saturation is less than 20% [see Dosage and Administration]. The majority of patients with CKD will require supplemental iron during the course of ESA therapy. Following initiation of therapy and after each dose adjustment, monitor hemoglobin weekly until the hemoglobin is stable and sufficient to minimize the need for RBC transfusion. Thereafter, hemoglobin may be monitored less frequently provided hemoglobin levels remain stable.

USE IN SPECIFIC POPULATIONS

Pregnancy

Pregnancy Category C

There are no adequate and well-controlled studies of Aranesp use in pregnant women. In animal reproduction and developmental toxicity studies, Aranesp increased early post-implantation loss. Use Aranesp during pregnancy only if the potential benefit justifies the potential risk to the fetus.

When Aranesp was administered intravenously to healthy pregnant rats and rabbits, there was no evidence of embryofetal toxicity or other adverse outcomes at the intravenous doses tested, up to 20 mcg/kg/day. This animal dose level of 20 mcg/kg/day is approximately 20-fold higher than the clinical recommended starting dose, depending on the patient’s treatment indication. Slightly reduced fetal weights were observed when healthy rat and rabbit mothers received doses of 1 mcg/kg or more. This dose of 1 mcg/kg is near the clinical recommended starting dose. While no adverse effects on uterine implantation occurred in animals, there was an increase in early post-implantation loss in animal fertility studies. It is not clear whether the increased post-implantation loss reflects a drug effect on the uterine environment or on the conceptus. No significant placental transfer of Aranesp was detected.

In a peri/postnatal development study, pregnant female rats received Aranesp intravenously every other day from implantation throughout pregnancy and lactation. The lowest dose tested, 0.5 mcg/kg, did not cause fetal toxicity; this dose is approximately equivalent to the clinical recommended starting dose. At maternal doses of 2.5 mcg/kg and higher, pups had decreased fetal body weights, which correlated with a slight increase in the incidence of fetal deaths, as well as delayed eye opening and delayed preputial separation [see Nonclinical Toxicology ].

Women who become pregnant during Aranesp treatment are encouraged to enroll in Amgen’s Pregnancy Surveillance Program.  Patients or their physicians should call 1-800-772-6436 (1-800-77-AMGEN) to enroll.

Nursing Mothers

It is not known whether Aranesp is excreted in human milk. Because many drugs are excreted in human milk, caution should be exercised when Aranesp is administered to a nursing woman.

Pediatric Use

Pediatric Patients with CKD


Aranesp safety and efficacy were similar between adults and pediatric patients with CKD who were over 1 year of age when patients were transitioned from treatment with epoetin alfa to Aranesp [see Adverse Reactions (6.1), Clinical Pharmacology (12.3), and Clinical Studies]. Aranesp safety and efficacy have not been established in the initial treatment of anemic pediatric patients with CKD or in the transition from another erythropoietin to Aranesp in pediatric CKD patients less than 1 year of age.


Pediatric Cancer Patients

The safety and efficacy of Aranesp in pediatric cancer patients have not been established.

Geriatric Use

Of the 1801 patients with CKD in clinical studies of Aranesp, 44% were age 65 and over, while 17% were age 75 and over. Of the 873 patients in clinical studies receiving Aranesp and concomitant cancer chemotherapy, 45% were age 65 and over, while 14% were age 75 and over. No differences in safety or efficacy were observed between older and younger patients.

Page last updated: 2014-01-15

-- advertisement -- The American Red Cross
 
Home | About Us | Contact Us | Site usage policy | Privacy policy

All Rights reserved - Copyright DrugLib.com, 2006-2017