DrugLib.com — Drug Information Portal

Rx drug information, pharmaceutical research, clinical trials, news, and more

Active ingredient: Diltiazem - Brands, Medical Use, Clinical Data

Brands, Medical Use, Clinical Data

Drug Category

  • Vasodilator Agents
  • Cardiovascular Agents
  • Antihypertensive Agents
  • Calcium-channel blocking agents

Dosage Forms

  • Solution

Brands / Synonyms

Acalix; Adizem; Altiazem; Anginyl; Angizem; Anoheal; Apo-Diltiaz; Britiazim; Bruzem; Calcicard; Cardizem; Cardizem CD; Cardizem SR; Cardizen LA; Cartia XT; Citizem; Cormax; d-cis-Diltiazem ; Deltazen; Dilacor; Dilacor XR; Dilacor-XR; Diladel; Dilcontin; Dilpral; Dilrene; Dilt-CD; Dilta-Hexal; Diltia; Diltiazem; Dilticard; Dilzem; Dilzen; Endrydil; Herbesser; Incoril AP; Masdil; Novo-Diltazem; Nu-Diltiaz; Syn-Diltiazem; Taztia XT; Tiazac; Tiazac Tildiem

Indications

For the treatment of Hypertension

Pharmacology

Diltiazem, a benzothiazepine calcium-channel blocker, is used alone or with an angiotensin-converting enzyme inhibitor, to treat hypertension, chronic stable angina pectoris, and Prinzmetal's variant angina. Diltiazem is similar to other peripheral vasodilators. Diltiazem inhibits the influx of extra cellular calcium across the myocardial and vascular smooth muscle cell membranes possibly by deforming the channel, inhibiting ion-control gating mechanisms, and/or interfering with the release of calcium from the sarcoplasmic reticulum. The decrease in intracellular calcium inhibits the contractile processes of the myocardial smooth muscle cells, causing dilation of the coronary and systemic arteries, increased oxygen delivery to the myocardial tissue, decreased total peripheral resistance, decreased systemic blood pressure, and decreased afterload.

Mechanism of Action

Possibly by deforming the channel, inhibiting ion-control gating mechanisms, and/or interfering with the release of calcium from the sarcoplasmic reticulum, dilitiazem, like verapamil, inhibits the influx of extracellular calcium across both the myocardial and vascular smooth muscle cell membranes. The resultant inhibition of the contractile processes of the myocardial smooth muscle cells leads to dilation of the coronary and systemic arteries and improved oxygen delivery to the myocardial tissue.

Absorption

Diltiazem is well absorbed from the gastrointestinal tract but undergoes substantial hepatic first-pass effect.

Toxicity

LD50=740mg/kg (orally in mice)

Biotrnasformation / Drug Metabolism

Not Available

Contraindications

Diltiazem is contraindicated in (1) patients with sick sinus syndrome except in the presence of a functioning ventricular pacemaker, (2) patients with second- or third-degree AV block except in the presence of a functioning ventricular pacemaker, (3) patients with severe hypotension (less than 90 mm Hg systolic), (4) patients who have demonstrated hypersensitivity to the drug, and (5) patients with acute myocardial infarction and pulmonary congestion documented by x-ray on admission.

Drug Interactions

Due to the potential for additive effects, caution and careful titration are warranted in patients receiving diltiazem hydrochloride concomitantly with other agents known to affect cardiac contractility and/or conduction. Pharmacologic studies indicate that there may be additive effects in prolonging AV conduction when using beta-blockers or digitalis concomitantly with Tiazac. As with all drugs, care should be exercised when treating patients with multiple medications. Diltiazem is both a substrate and an inhibitor of the cytochrome P-450 3A4 enzyme system. Other drugs that are specific substrates, inhibitors, or inducers of the enzyme system may have a significant impact on the efficacy and side effect profile of diltiazem. Patients taking other drugs that are substrates of CYP450 3A4, especially patients with renal and/or hepatic impairment, may require dosage adjustment when starting or stopping concomitantly administered diltiazem in order to maintain optimum therapeutic blood levels.

Beta Blockers

Controlled and uncontrolled domestic studies suggest that concomitant use of diltiazem hydrochloride and beta-blockers is usually well tolerated, but available data are not sufficient to predict the effects of concomitant treatment in patients with left ventricular dysfunction or cardiac conduction abnormalities. Administration of diltiazem hydrochloride concomitantly with propranolol in five normal volunteers resulted in increased propranolol levels in all subjects and bioavailability of propranolol was increased approximately 50%. In vitro, propranolol appears to be displaced from its binding sites by diltiazem. If combination therapy is initiated or withdrawn in conjunction with propranolol, an adjustment in the propranolol dose may be warranted.

Cimetidine

A study in six healthy volunteers has shown a significant increase in peak diltiazem plasma levels (58%) and AUC (53%) after a 1-week course of cimetidine 1200 mg/day and a single dose of diltiazem 60mg. Ranitidine produced smaller, nonsignificant increases. The effect may be mediated by cimetidine's known inhibition of hepatic cytochrome P-450, the enzyme system responsible for the first-pass metabolism of diltiazem. Patients currently receiving diltiazem therapy should be carefully monitored for a change in pharmacological effect when initiating and discontinuing therapy with cimetidine. An adjustment in the diltiazem dose may be warranted.

Digitalis

Administration of diltiazem hydrochloride with digoxin in 24 healthy male subjects increased plasma digoxin concentrations approximately 20%. Another investigator found no increase in digoxin levels in 12 patients with coronary artery disease. Since there have been conflicting results regarding the effect of digoxin levels, it is recommended that digoxin levels be monitored when initiating, adjusting, and discontinuing diltiazem hydrochloride therapy to avoid possible over- or under-digitalization.

Anesthetics

The depression of cardiac contractility, conductivity, and automaticity as well as the vascular dilation associated with anesthetics may be potentiated by calcium channel blockers. When used concomitantly, anesthetics and calcium channel blockers should be titrated carefully.

Cyclosporine

A pharmacokinetic interaction between diltiazem and cyclosporine has been observed during studies involving renal and cardiac transplant patients. In renal and cardiac transplant recipients, a reduction of cyclosporine dose ranging from 15% to 48% was necessary to maintain cyclosporine trough concentrations similar to those seen prior to the addition of diltiazem. If these agents are to be administered concurrently, cyclosporine concentrations should be monitored, especially when diltiazem therapy is initiated, adjusted, or discontinued.

The effect of cyclosporine on diltiazem plasma concentrations has not been evaluated.

Carbamazepine

Concomitant administration of diltiazem with carbamazepine has been reported to result in elevated serum levels of carbamazepine (40% to 72% increase), resulting in toxicity in some cases. Patients receiving these drugs concurrently should be monitored for a potential drug interaction.

Benzodiazepines

Studies showed that diltiazem increased the AUC of midazolam and triazolam by 3-4 fold and the Cmax by 2-fold, compared to placebo. The elimination half life of midazolam and triazolam also increased (1.5-2.5 fold) during coadministration with diltiazem. These pharmacokinetic effects seen during diltiazem coadministration can result in increased clinical effects (e.g., prolonged sodation)of both midazolam and triazolam.

Lovastatin

In a ten-subject study, coadministration of diltiazem (120 mg bid) with lovastatin resulted in a 3-4 times increase in mean lovastatin AUC and Cmax vs. lovastatin alone; no change in pravastatin AUC and Cmax was observed during diltiazem coadministration. Diltiazem plasma levels were not significantly affected by lovastatin or pravastatin.

Rifampin

Coadministration of rifampin with diltiazem lowered the diltiazem plasma concentrations to undetectable levels. Coadministration of diltiazem with rifampin or any known CYP3A4 inducer should be avoided when possible, and alternative therapy considered.

-- advertisement -- The American Red Cross
 
Home | About Us | Contact Us | Site usage policy | Privacy policy

All Rights reserved - Copyright DrugLib.com, 2006-2017