DrugLib.com — Drug Information Portal

Rx drug information, pharmaceutical research, clinical trials, news, and more



Pharmacokinetic variability of long-acting stimulants in the treatment of children and adults with attention-deficit hyperactivity disorder.

Author(s): Ermer JC, Adeyi BA, Pucci ML

Affiliation(s): Clinical Pharmacology and Pharmacokinetics, Shire Development Inc., Wayne, Pennsylvania, USA. jaermer@shire.com

Publication date & source: 2010-12-01, CNS Drugs., 24(12):1009-25.

Publication type: Research Support, Non-U.S. Gov't; Review

Methylphenidate- and amfetamine-based stimulants are first-line pharmacotherapies for attention-deficit hyperactivity disorder, a common neurobehavioural disorder in children and adults. A number of long-acting stimulant formulations have been developed with the aim of providing once-daily dosing, employing various means to extend duration of action, including a transdermal delivery system, an osmotic-release oral system, capsules with a mixture of immediate- and delayed-release beads, and prodrug technology. Coefficients of variance of pharmacokinetic measures can estimate the levels of pharmacokinetic variability based on the measurable variance between different individuals receiving the same dose of stimulant (interindividual variability) and within the same individual over multiple administrations (intraindividual variability). Differences in formulation clearly impact pharmacokinetic profiles. Many medications exhibit wide interindividual variability in clinical response. Stimulants with low levels of inter- and intraindividual variability may be better suited to provide consistent levels of medication to patients. The pharmacokinetic profile of stimulants using pH-dependent bead technology can vary depending on food consumption or concomitant administration of medications that alter gastric pH. While delivery of methylphenidate with the transdermal delivery system would be unaffected by gastrointestinal factors, intersubject variability is nonetheless substantial. Unlike the beaded formulations and, to some extent (when considering total exposure) the osmotic-release formulation, systemic exposure to amfetamine with the prodrug stimulant lisdexamfetamine dimesylate appears largely unaffected by such factors, likely owing to its dependence on systemic enzymatic cleavage of the precursor molecule, which occurs primarily in the blood involving red blood cells. The high capacity but as yet unidentified enzymatic system for conversion of lisdexamfetamine dimesylate may contribute to its consistent pharmacokinetic profile. The reasons underlying observed differential responses to stimulants are likely to be multifactorial, including pharmacodynamic factors. While the use of stimulants with low inter- and intrapatient pharmacokinetic variability does not obviate the need to titrate stimulant doses, stimulants with low intraindividual variation in pharmacokinetic parameters may reduce the likelihood of patients falling into subtherapeutic drug concentrations or reaching drug concentrations at which the risk of adverse events increases. As such, clinicians are urged both to adjust stimulant doses based on therapeutic response and the risk for adverse events and to monitor patients for potential causes of pharmacokinetic variability.

Page last updated: 2011-12-09

-- advertisement -- The American Red Cross
 
Home | About Us | Contact Us | Site usage policy | Privacy policy

All Rights reserved - Copyright DrugLib.com, 2006-2017